版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省昭通市大关县二中数学高一第二学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.曲线与曲线的()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等2.已知三个内角、、的对边分别是,若则的面积等于()A. B. C. D.3.某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距抽取样本,将全体会员随机按1~200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第5组抽出的号码为22,则第1组至第3组抽出的号码依次是()A.3,8,13 B.2,7,12 C.3,9,15 D.2,6,124.先后抛掷枚均匀的硬币,至少出现一次反面的概率是()A. B. C. D.5.已知平面向量,,若,则实数()A.-2 B.-1 C. D.26.已知向量,,,且,则实数的值为A. B. C. D.7.某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告费用不超过9万元,甲、乙电视台的广告费标准分别是500元/分钟和200元/分钟,假设甲、乙两个电视台为该公司做的广告能给公司带来的收益分别为0.4万元/分钟和0.2万元/分钟,那么该公司合理分配在甲、乙两个电视台的广告时间,能使公司获得最大的收益是()万元A.72 B.80 C.84 D.908.如图所示:在正方体中,设直线与平面所成角为,二面角的大小为,则为()A. B. C. D.9.已知函数是奇函数,将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为.若的最小正周期为,且,则()A. B. C. D.10.函数的单调减区间为A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知一组数据6,7,8,8,9,10,则该组数据的方差是____.12.在正项等比数列中,,,则公比________.13.已知,且,.则的值是________.14.已知,则的值为________.15.将函数f(x)=cos(2x)的图象向左平移个单位长度后,得到函数g(x)的图象,则下列结论中正确的是_____.(填所有正确结论的序号)①g(x)的最小正周期为4π;②g(x)在区间[0,]上单调递减;③g(x)图象的一条对称轴为x;④g(x)图象的一个对称中心为(,0).16.在中,若,则____;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知方程有两个实根,记,求的值.18.在中,角,,的对边分别为,,,已知向量,,且.(1)求角的值;(2)若为锐角三角形,且,求的取值范围.19.已知函数的周期为,且图像上一个最低点为.(1)求的解析式(2)若函数在上至少含20个零点时,求b的最小值.20.某校对高二年段的男生进行体检,现将高二男生的体重(kg)数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[60,65)的人数为1.根据一般标准,高二男生体重超过65kg属于偏胖,低于55kg属于偏瘦.观察图形的信息,回答下列问题:(1)求体重在[60,65)内的频率,并补全频率分布直方图;(2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.21.设数列,,已知,,(1)求数列的通项公式;(2)设为数列的前项和,对任意.(i)求证:;(ii)若恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
首先将后面的曲线化简为标准形式,分别求两个曲线的几何性质,比较后得出选项.【题目详解】首先化简为标准方程,,由方程形式可知,曲线的长轴长是8,短轴长是6,焦距是,离心率,,的长轴长是,短轴长是,焦距是,离心率,所以离心率相等.故选D.【题目点拨】本题考查了椭圆的几何性质,属于基础题型.2、B【解题分析】
根据三角的面积公式求解.【题目详解】,故选.【题目点拨】本题考查三角形的面积计算.三角形有两个面积公式:和,选择合适的进行计算.3、B【解题分析】
根据系统抽样原理求出抽样间距,再根据第5组抽出的号码求出第1组抽出的号码,即可得出第2组、第3组抽取的号码.【题目详解】根据系统抽样原理知,抽样间距为200÷40=5,
当第5组抽出的号码为22时,即22=4×5+2,
所以第1组至第3组抽出的号码依次是2,7,1.
故选:B.【题目点拨】本题考查了系统抽样方法的应用问题,是基础题.4、D【解题分析】
先求得全是正面的概率,用减去这个概率求得至少出现一次反面的概率.【题目详解】基本事件的总数为,全是正面的的事件数为,故全是正面的概率为,所以至少出现一次反面的概率为,故选D.【题目点拨】本小题主要考查古典概型概率计算,考查正难则反的思想,属于基础题.5、A【解题分析】
由题意,则,再由数量积的坐标表示公式即可得到关于的方程,解出它的值【题目详解】由,,则,即解得:故选:A【题目点拨】本题考查数量积判断两个平面向量的垂直关系,向量的数量积坐标表示,属于基础题.6、A【解题分析】
求出的坐标,由得,得到关于的方程.【题目详解】,,因为,所以,故选A.【题目点拨】本题考查向量减法和数量积的坐标运算,考查运算求解能力.7、B【解题分析】
设公司在甲、乙两个电视台的广告时间分别为分钟,总收益为元,根据题意得到约束条件,目标函数,平行目标函数图象找到在纵轴上截距最大时所经过的点,把点的坐标代入目标函数中即可.【题目详解】设公司在甲、乙两个电视台的广告时间分别为分钟,总收益为元,则由题意可得可行解域:,目标函数为可行解域化简得,,在平面直角坐标系内,画出可行解域,如下图所示:作直线,即,平行移动直线,当直线过点时,目标函数取得最大值,联立,解得,所以点坐标为,因此目标函数最大值为,故本题选B.【题目点拨】本题考查了应用线性规划知识解决实际问题的能力,正确列出约束条件,画出可行解域是解题的关键.8、A【解题分析】
连结BC1,交B1C于O,连结A1O,则∠BA1O是直线A1B与平面A1DCB1所成角θ1,由BC⊥DC,B1C⊥DC,知∠BCB1是二面角A1﹣DC﹣A的大小θ2,由此能求出结果.【题目详解】连结BC1,交B1C于O,连结A1O,∵在正方体ABCD﹣A1B1C1D1中,BC1⊥B1C,BC1⊥DC,∴BO⊥平面A1DCB1,∴∠BA1O是直线A1B与平面A1DCB1所成角θ1,∵BO=A1B,∴θ1=30°;∵BC⊥DC,B1C⊥DC,∴∠BCB1是二面角A1﹣DC﹣A的大小θ2,∵BB1=BC,且BB1⊥BC,∴θ2=45°.故选A.【题目点拨】本题考查线面角、二面角的求法,解题时要认真审题,注意空间思维能力的培养,属于中档题.9、C【解题分析】
只需根据函数性质逐步得出值即可。【题目详解】因为为奇函数,∴;又,,又∴,故选C。【题目点拨】本题考查函数的性质和函数的求值问题,解题关键是求出函数。10、A【解题分析】
根据正弦函数的单调递减区间,列出不等式求解,即可得出结果.【题目详解】的单调减区间为,,解得函数的单调减区间为.故选A.【题目点拨】本题主要考查三角函数的单调性,熟记正弦函数的单调区间即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解题分析】
由题意首先求得平均数,然后求解方差即可.【题目详解】由题意,该组数据的平均数为,所以该组数据的方差是.【题目点拨】本题主要考查方差的计算公式,属于基础题.12、【解题分析】
利用等比中项可求出,再由可求出公比.【题目详解】因为,,所以,,解得.【题目点拨】本题考查了等比数列的性质,考查了计算能力,属于基础题.13、2【解题分析】
.14、【解题分析】
由题意利用诱导公式求得的值,可得要求式子的值.【题目详解】,则,故答案为:.【题目点拨】本题主要考查诱导公式的应用,属于基础题.15、②④.【解题分析】
利用函数的图象的变换规律求得的解析式,再利用三角函数的周期性、单调性、图象的对称性,即可求解,得到答案.【题目详解】由题意,将函数的图象向左平移个单位长度后,得到的图象,则函数的最小正周期为,所以①错误的;当时,,故在区间单调递减,所以②正确;当时,,则不是函数的对称轴,所以③错误;当时,,则是函数的对称中心,所以④正确;所以结论正确的有②④.【题目点拨】本题主要考查了三角函数的图象变换,以及三角函数的图象与性质的判定,其中解答熟记三角函数的图象变换,以及三角函数的图象与性质,准确判定是解答的关键,着重考查了推理与运算能力,属于中档试题.16、【解题分析】试题分析:因为,所以.由正弦定理,知,所以==.考点:1、同角三角函数间的基本关系;2、正弦定理.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解题分析】
求出的值和的范围即可【题目详解】因为,所以又有两个实根所以所以因为所以,所以所以所以故答案为:【题目点拨】1.要清楚反三角函数的定义域和值域,如的定义域为,值域为2.由三角函数的值求角时一定要判断出角的范围.18、(1);(2)【解题分析】
(1)根据和正弦定理余弦定理求得.(2)先利用正弦定理求出R=1,再把化成,再利用三角函数的图像和性质求解.【题目详解】(1)因为,所以,由正弦定理化角为边可得,即,由余弦定理可得,又,所以.(2)由(1)可得,设的外接圆的半径为,因为,,所以,则,因为为锐角三角形,所以,即,所以,所以,所以,故的取值范围为.【题目点拨】(1)本题主要考查正弦定理余弦定理解三角形,考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)对于复合函数的问题自然是利用复合函数的性质解答,求复合函数的最值,一般从复合函数的定义域入手,结合三角函数的图像一步一步地推出函数的最值.19、(1)(2)【解题分析】
(1)由周期得,利用最低点坐标可得,得解析式;(2)直接求出零点,根据零点排列得出有20个零点时,的最小值.【题目详解】(1)由最低点为,得,由,得,由点在图像上得,即,,即,又,,.(2)由(1)得,周期,在长为的闭区间内有2个或3个零点,由,得,或,所以或..又,则当时恰有20个零点,此时b的最小值为.【题目点拨】本题考查求三角函数解析式,考查函数的零点个数问题.掌握三角函数的性质如周期性质,最值是解本题的基础.本题零点问题可直接求出零点,然后由零点分析得出结论.20、(1)(2)三段人数分别为3,2,1(3)【解题分析】试题分析:(1)利用频率分布直方图的性质能求出求出体重在[60,65)内的频率,由此能补全的频率分布直方图;(2)设男生总人数为n,由,可得n=1000,从而体重超过65kg的总人数300,由此能求出各组应分别抽取的人数;(3)利用频率分布直方图能估计高二男生的体重的中位数与平均数试题解析:(1)体重在内的频率补全的频率分布直方图如图所示.(2)设男生总人数为,由,可得体重超过的总人数为在的人数为,应抽取的人数为,在的人数为,应抽取的人数为,在的人数为,应抽取的人数为.所以在,,三段人数分别为3,2,1.(3)中位数为60kg,平均数为(kg)考点:1.众数、中位
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年桥梁经济分析与投资评估
- 2026春招:行政专员面试题及答案
- 2026春招:销售代表真题及答案
- 2026春招:西部航空试题及答案
- 货运安全课件
- 心理咨询部服务模式改进
- 医疗信息录入员礼仪与职业操守
- 医药销售代表礼仪培训内容
- 医疗大数据与临床决策支持
- 护理团队建设与护理文化建设探索
- DB54∕T 0359-2024 雅江雪牛育肥期饲养管理技术规程
- 贵州省贵阳市2023-2024学年高一上学期期末考试语文试卷(含答案)
- 电气类仪器仪表使用
- 老年医学发展与挑战
- 9.2奉献社会我践行课件-2025-2026学年统编版 道德与法治 八年级上册
- 烟花爆竹零售店安全生产责任制
- 2025江苏苏州市昆山钞票纸业有限公司招聘10人笔试历年参考题库附带答案详解
- 商业中庭防坠网施工方案
- 交付异常应急预案
- 砌体工程监理实施细则及操作规范
- GB/T 222-2025钢及合金成品化学成分允许偏差
评论
0/150
提交评论