山东省泰安市第四中学2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第1页
山东省泰安市第四中学2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第2页
山东省泰安市第四中学2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第3页
山东省泰安市第四中学2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第4页
山东省泰安市第四中学2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省泰安市第四中学2024届高二数学第二学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题:若,则;:“”是“”的必要不充分条件,则下列命题是真命题的是()A. B.C. D.2.为预测某种产品的回收率y,需要研究它和原料有效成分的含量x之间的相关关系,现取了8组观察值.计算得,,,,则y对x的回归方程是()A.=11.47+2.62x B.=-11.47+2.62xC.=2.62+11.47x D.=11.47-2.62x3.在长方形中,为的中点,为的中点,设则()A. B. C. D.4.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为()A. B. C. D.5.某几何体的三视图如图所示,其中正视图和侧视图的上半部分均为半圆,下半部分为等腰直角三角形,则该几何体的表面积为()A. B. C. D.6.4名同学报名参加两个课外活动小组,每名同学限报其中的一个小组,则不同的报名方法共有()A.4种 B.16种 C.64种 D.256种7.设复数满足(为虚数单位),则复数()A. B.C. D.8.已知点P是椭圆上的动点,当点P到直线x-2y+10=0的距离最小时,点P的坐标是()A. B. C. D.9.已知命题;命题若,则.则下列命题为真命题的是A. B.C. D.10.已知双曲线的离心率为,则此双曲线的渐近线方程为A. B. C. D.11.已知数列是等比数列,若则的值为()A.4 B.4或-4 C.2 D.2或-212.命题“”的否定是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.用反证法证明命题:“定义在实数集上的单调函数的图象与轴至多只有个交点”时,应假设“定义在实数集上的单调函数的图象与轴__________”.14.已知点M抛物线上的一点,F为抛物线的焦点,点A在圆上,则的最小值________.15.如图,在底面半径和高均为的圆锥中,是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到其准线的距离为______________.16.已知一组数据1,3,2,5,4,那么这组数据的方差为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲将要参加某决赛,赛前,,,四位同学对冠军得主进行竞猜,每人选择一名选手,已知,选择甲的概率均为,,选择甲的概率均为,且四人同时选择甲的概率为,四人均末选择甲的概率为.(1)求,的值;(2)设四位同学中选择甲的人数为,求的分布列和数学期望.18.(12分)已知椭圆:经过点,离心率为.(1)求椭圆的方程;(2)过点的直线交椭圆于,两点,为椭圆的左焦点,若,求直线的方程.19.(12分)椭圆:过点,且离心率为.(1)求椭圆的方程;(2)如图,过点的直线与椭圆相交于两个不同的点,,求的取值范围.20.(12分)某机构为了调查某市同时符合条件与(条件:营养均衡,作息规律;条件:经常锻炼,劳逸结合)的高中男生的体重(单位:)与身高(单位:)是否存在较好的线性关系,该机构搜集了位满足条件的高中男生的数据,得到如下表格:身高/体重/根据表中数据计算得到关于的线性回归方程对应的直线的斜率为.(1)求关于的线性回归方程(精确到整数部分);(2)已知,且当时,回归方程的拟合效果较好。试结合数据,判断(1)中的回归方程的拟合效果是否良好?(3)该市某高中有位男生同时符合条件与,将这位男生的身高(单位:)的数据绘制成如下的茎叶图。若从这位男生中任选位,记这位中体重超过的人数为,求的分布列及其数学期望(提示:利用(1)中的回归方程估测这位男生的体重).21.(12分)已知函数f(x)=m(1)当n-m=1时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-3m2x2的两个零点分别为x1,x2(22.(10分)数列的前项和为,且满足.(Ⅰ)求,,,的值;(Ⅱ)猜想数列的通项公式,并用数学归纳法证明你的结论.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】试题分析:命题为假命题,比如,但,命题为真命题,不等式的解为,所以,而,所以“”是“”的必要不充分条件,由命题的真假情况,得出为真命题,选B.考点:命题真假的判断.【易错点睛】本题主要考查了命题真假的判断以及充分必要条件的判断,属于易错题.判断一个命题为假命题时,举出一个反例即可,判断为真命题时,要给出足够的理由.对于命题,为假命题,容易判断,对于命题,要弄清楚充分条件,必要条件的定义:若,则是的充分不必要条件,若,则是的必要不充分条件,再根据复合命题真假的判断,得出为真命题.2、A【解题分析】分析:根据公式计算≈2.62,≈11.47,即得结果.详解:由,直接计算得≈2.62,≈11.47,所以=2.62x+11.47.选A.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,写出回归方程,回归直线方程恒过点.3、A【解题分析】

由平面向量线性运算及平面向量基本定理,即可化简,得到答案.【题目详解】如图所示,由平面向量线性运算及平面向量基本定理可得:.【题目点拨】本题主要考查了平面向量的线性运算,以及平面向量的基本定理的应用,其中解答中熟记向量的运算法则和平面向量的基本定理是解答的关键,着重考查了推理与运算能力,属于基础题.4、A【解题分析】

根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【题目详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【题目点拨】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.5、A【解题分析】

根据三视图知:几何体为半球和圆柱和圆锥的组合体,计算表面积得到答案.【题目详解】根据三视图知:几何体为半球和圆柱和圆锥的组合体..故选:.【题目点拨】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.6、B【解题分析】根据题意,每个同学可以在两个课外活动小组中任选1个,即有2种选法,则4名同学一共有种选法;故选B.7、A【解题分析】

利用复数的代数形式的乘除运算化简,求出数复数,即可得到答案.【题目详解】复数满足,则,所以复数.故选:A.【题目点拨】本题考查复数的模、共轭复数的概念,考查运算求解能力.8、C【解题分析】分析:设与直线x-2y+10=0平行且与椭圆相切的直线方程为,与椭圆方程联立,利用,解得,即可得出结论.详解:设与直线x-2y+10=0平行且与椭圆相切的直线方程为,联立,化为,,解得,取时,,解得,,.故选:C.点睛:本题考查了直线与椭圆的相切与一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.9、B【解题分析】试题分析:显然命题是真命题;命题若,则是假命题,所以是真命题,故为真命题.考点:命题的真假.10、C【解题分析】试题分析:因为双曲线的离心率为,所以,又因为双曲线中,所以,而焦点在轴上的双曲线的渐近线方程为,所以此双曲线的渐近线方程为,故选C.考点:1、双曲线的离心率;2、双曲线渐近方程.11、A【解题分析】

设数列{an}的公比为q,由等比数列通项公式可得q4=16,由a3=a1q2,计算可得.【题目详解】因故选:A【题目点拨】本题考查等比数列的性质以及通项公式,属于简单题.12、A【解题分析】

根据全称命题的否定形式书写.【题目详解】根据全称命题的否定形式可知“”的否定是“”.故选A.【题目点拨】本题考查全称命题的否定形式,属于简单题型.二、填空题:本题共4小题,每小题5分,共20分。13、至少有个交点【解题分析】分析:反证法证明命题,只否定结论,条件不变。详解:命题:“定义在实数集上的单调函数的图象与轴至多只有个交点”时,结论的反面为“与轴至少有个交点”。点睛:反证法证明命题,只否定结论,条件不变,至多只有个理解为,故否定为.14、3【解题分析】

由题得抛物线的准线方程为,过点作于,根据抛物线的定义将问题转化为的最小值,根据点在圆上,判断出当三点共线时,有最小值,进而求得答案.【题目详解】由题得抛物线的准线方程为,过点作于,又,所以,因为点在圆上,且,半径为,故当三点共线时,,所以的最小值为3.故答案为:3【题目点拨】本题主要考查了抛物线的标准方程与定义,与圆有关的最值问题,考查了学生的转化与化归的思想.15、【解题分析】

结合抛物线的解析式分析可知,若要求解解析式,则至少需要求出一个抛物线上的点,因抛物线所在平面为平面,故可考虑先求出长度,作,先求出,再以平面建立直角坐标系,求出点,代入抛物线解析式即可求解【题目详解】如图,作交于点,由是母线的中点,底面半径和高均为可得,则,以平面建立直角坐标系,以为原点,如图:则,设抛物线方程为,将代入可得,则抛物线的焦点到其准线的距离为故答案为【题目点拨】本题考查圆锥中具体线段的求解,抛物线解析式的求法,数形结合的思想,属于中档题16、2;【解题分析】

先求这组数据的平均数,再代入方差公式,求方差.【题目详解】因为,方差.【题目点拨】本题考查平均数与方差公式的简单应用,考查基本的数据处理能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)的分布列见解析;数学期望为2【解题分析】

(1)根据题意,利用相互独立事件概率计算公式列出关于的方程组,即可求解出答案.(2)根据题意先列出随机变量的所有可能取值,然后根据独立重复事件的概率计算公式得出各自的概率,列出分布列,最后根据数学期望的计算公式求解出结果.【题目详解】解:(1)由已知可得解得(2)可能的取值为0,1,2,3,4,,,,,.的分布列如下表:01234.【题目点拨】本题主要考查逆用相互独立事件概率计算公式求解概率问题以及离散型随机变量的分布列和期望的求解.18、(1);(2)或【解题分析】

(1)由椭圆的离心率可得,,从而使椭圆方程只含一个未知数,把点的坐标代入方程后,求得,进而得到椭圆的方程为;(2)因为直线过定点,所以只要求出直线的斜率即可,此时需对直线的斜率分等于0和不等于0两种情况进行讨论,当斜率不为0时,设直线的方程为,点、,利用得到关于的方程,并求得.【题目详解】(1)设椭圆的焦距为,则,∴,,所以,椭圆的方程为,将点的坐标代入椭圆的方程得,解得,则,,因此,椭圆的方程为.(2)①当直线斜率为0时,与椭圆交于,,而.此时,故不符合题意.②当直线斜率不为0时,设直线的方程为,设点、,将直线的方程代入椭圆的方程,并化简得,,解得或,由韦达定理可得,,,同理可得,所以,即解得:,符合题意因此,直线的方程为或.【题目点拨】本题考查椭圆方程的求法、直线与椭圆的位置关系并与向量进行交会,求解过程中要始终领会设而不求的思想,即利用坐标运算解决几何问题,考查运算求解能力.19、(1);(2).【解题分析】分析:(1)根据题意得到a,b,c的方程组,解方程组即得椭圆的方程.(2)先考虑直线l的斜率不存在时的值,再考虑当直线l的斜率存在时,的范围,最后综合得到的范围.详解:(1)由题得所以椭圆的方程为.(2)①当直线l的斜率不存在时,,所以.②当直线l的斜率存在时,设直线l的方程为,消去y整理得,由,可得,且,所以,所以,综上.点睛:(1)本题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系和最值问题,意在考查学生对这些基础知识的掌握水平和分析推理能力基本计算能力.(2)设直线的方程时,如果涉及斜率,一定要分斜率存在和不存在两种情况讨论,所以本题要先讨论当直线l的斜率不存在时的值.20、(1);(2)见解析;(3)见解析.【解题分析】分析:(1)依题意可知,又,,即可得到答案;(2)求出即可;(3)的可能取值为,分别求出对应的概率即可.详解:(1)依题意可知,∵,∴,故关于的线性回归方程为.(2)∵∴,故(1)中的回归方程的拟合效果良好.(3)令,得,故这位男生的体重有为体重超过.的可能取值为.则的分布列为点睛:求回归方程,关键在于正确求出系数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论