版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省湘西自治州四校2024届高二数学第二学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则A.-70 B.28 C.-26 D.402.已知命题p:∃x∈R,x2-x+1≥1.命题q:若a2<b2,则a<b,下列命题为真命题的是()A. B. C. D.3.如果(,表示虚数单位),那么()A.1 B. C.2 D.04.某巨型摩天轮.其旋转半径50米,最高点距地面110米,运行一周大约21分钟.某人在最低点的位置坐上摩天轮,则第35分钟时他距地面大约为()米.A.75 B.85 C.100 D.1105.已知命题:,,若是真命题,则实数的取值范围为()A. B. C. D.6.在平面直角坐标系中,方程表示在x轴、y轴上的截距分别为的直线,类比到空间直角坐标系中,在轴、轴、轴上的截距分别为的平面方程为()A. B.C. D.7.已知定义在上的函数满足,且函数在上是减函数,若,,,则,,的大小关系为()A. B. C. D.8.若复数,则复数在复平面内的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知,R,且,则()A. B. C. D.10.为了落实中央提出的精准扶贫政策,永济市人力资源和社会保障局派人到开张镇石桥村包扶户贫困户,要求每户都有且只有人包扶,每人至少包扶户,则不同的包扶方案种数为()A. B. C. D.11.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种 B.20种 C.25种 D.32种12.下列有关命题的说法正确的是A.“”是“”的充分不必要条件B.“x=2时,x2-3x+2=0”的否命题为真命题C.直线:,:,的充要条件是D.命题“若,则”的逆否命题为真命题二、填空题:本题共4小题,每小题5分,共20分。13.已知,若展开式的常数项的值不大于15,则a取值范围为________.14.若存在两个正实数x,y使等式成立,(其中)则实数m的取值范围是________.15.将极坐标方程化为直角坐标方程得________.16.若函数为奇函数,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲、乙两人各射击一次,击中目标的概率分别是和.假设两人射击是否击中目标相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响.(1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.18.(12分)已知极坐标系的极点在直角坐标系的原点处,极轴与轴正半轴重合,直线的参数方程为:(为参数,),曲线的极坐标方程为:.(1)写出曲线的直角坐标方程;(2)设直线与曲线相交于两点,直线过定点,若,求直线的斜率.19.(12分)如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).(1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?(2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.20.(12分)设函数,曲线在点处的切线方程为.(1)求,的值;(2)若,求函数的单调区间;(3)设函数,且在区间内存在单调递减区间,求实数的取值范围.21.(12分)已知复数.(1)若是纯虚数,求;(2)若,求.22.(10分)已知平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1方程为ρ=2sinθ.C2的参数方程为(1)写出曲线C1的直角坐标方程和C(2)设点P为曲线C1上的任意一点,求点P到曲线C
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
令t=x﹣3,把等式化为关于t的展开式,再求展开式中t3的系数.【题目详解】令t=x﹣3,则(x﹣2)5﹣3x4=a0+a1(x﹣3)+a2(x﹣3)2+a3(x﹣3)3+a4(x﹣3)4+a5(x﹣3)5,可化为(t+1)5﹣3(t+3)4=a0+a1t+a2t2+a3t3+a4t4+a5t5,则a3==10﹣36=﹣1.故选C.【题目点拨】本题主要考查了二项式定理的应用,指定项的系数,属于基础题.2、B【解题分析】
先判定命题的真假,再结合复合命题的判定方法进行判定.【题目详解】命题p:∃x=1∈R,使x2-x+1≥1成立.故命题p为真命题;当a=1,b=-2时,a2<b2成立,但a<b不成立,故命题q为假命题,故命题p∧q,¬p∧q,¬p∧¬q均为假命题;命题p∧¬q为真命题,故选:B.【题目点拨】本题以命题的真假判断与应用为载体,考查了复合命题,特称命题,不等式与不等关系,难度中档.3、B【解题分析】分析:复数方程左边分子、分母同乘分母的共轭复数,化简为的形式,利用复数相等求出即可详解:解得故选点睛:本题主要考查了复数相等的充要条件,运用复数的乘除法运算法则求出复数的表达式,令其实部与虚部分别相等即可求出答案.4、B【解题分析】分析:设出P与地面高度与时间t的关系,f(t)=Asin(ωt+φ)+B,由题意求出三角函数中的参数A,B,及周期T,利用三角函数的周期公式求出ω,通过初始位置求出φ,求出f(35)的值即可.详解:设P与地面高度与时间t的关系,f(t)=Asin(ωt+φ)+B(A>0,ω>0,φ∈[0,2π)),由题意可知:A=50,B=110﹣50=60,T==21,∴ω=,即f(t)=50sin(t+φ)+60,又因为f(0)=110﹣100=10,即sinφ=﹣1,故φ=,∴f(t)=50sin(t+)+60,∴f(35)=50sin(×35+)+60=1.故选B.点睛:已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求.5、A【解题分析】分析:先写出命题的否定形式,将其转化为恒成立问题,求出的值.详解:命题:,,则为,是真命题,即恒成立,的最大值为1,所以故选A.点睛:含有一个量词的命题的否定命题命题的否定6、A【解题分析】
平面上直线方程的截距式推广到空间中的平面方程的截距式是.【题目详解】由类比推理得:若平面在轴、轴、轴上的截距分别为,则该平面的方程为:,故选A.【题目点拨】平面中的定理、公式等类比推理到空间中时,平面中的直线变为空间中的直线或平面,平面中的面积变为空间中的体积.类比推理得到的结论不一定正确,必要时要对得到的结论证明.如本题中,可令,看是否为.7、B【解题分析】
利用函数奇偶性和单调性可得,距离y轴近的点,对应的函数值较小,可得选项.【题目详解】因为函数满足,且函数在上是减函数,所以可知距离y轴近的点,对应的函数值较小;,且,所以,故选B.【题目点拨】本题主要考查函数性质的综合应用,侧重考查数学抽象和直观想象的核心素养.8、B【解题分析】
把复数为标准形式,写出对应点的坐标.【题目详解】,对应点,在第二象限.故选B.【题目点拨】本题考查复数的几何意义,属于基础题.9、B【解题分析】
取特殊值排除ACD选项,由指数函数的单调性证明不等式,即可得出正确答案.【题目详解】当时,,则A错误;在上单调递减,,则,则B正确;当时,,则C错误;当时,,则D错误;故选:B【题目点拨】本题主要考查了由条件判断不等式是否成立,属于中档题.10、C【解题分析】
先分组再排序,可得知这人所包扶的户数分别为、、或、、,然后利用分步计数原理可得出所求方案的数目.【题目详解】由题意可知,这人所包扶的户数分别为、、或、、,利用分步计数原理知,不同的包扶方案种数为,故选C.【题目点拨】本题考查排列组合的综合问题,考查分配问题,求解这类问题遵循先分组再排序的原则,再分组时,要注意平均分组的问题,同时注意分步计数原理的应用,考查分析问题和解决问题的能力,属于中等题.11、D【解题分析】每个同学都有2种选择,根据乘法原理,不同的报名方法共有种,应选D.12、D【解题分析】A选项不正确,由于可得,故“”是“”的必要不充分条件;B选项不正确,“时,”的逆命题为“当时,”,是假命题,故其否命题也为假;C选项不正确,若两直线平行,则,解得;D选项正确,角相等时函数值一定相等,原命题为真命题,故其逆否命题为真,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由二项式定理及展开式通项得:,又,所以,又时,展开式无常数项,即a取值范围为,得解.【题目详解】由二项式定理可得:展开式的常数项为,又展开式的常数项的值不大于15,则,又,所以,又时,展开式无常数项,即a取值范围为,故答案为:.【题目点拨】本题考查了二项式定理及展开式通项,属中档题.14、【解题分析】,,设,设,那么,恒成立,所以是单调递减函数,当时,,当时,,函数单调递增,当,,函数单调递减,所以在时,取得最大值,,即,解得:或,写出区间为,故填:.15、【解题分析】
在曲线极坐标方程两边同时乘以,由可将曲线的极坐标方程化为普通方程.【题目详解】在曲线极坐标方程两边同时乘以,得,化为普通方程得,即,故答案为:.【题目点拨】本题考查曲线极坐标方程与普通方程之间的转化,解题时充分利用极坐标与普通方程之间的互化公式,考查运算求解能力,属于中等题.16、【解题分析】
根据函数奇偶性的定义和性质建立方程求出a的值,再将1代入即可求解【题目详解】∵函数为奇函数,∴f(﹣x)=﹣f(x),即f(﹣x),∴(2x﹣1)(x+a)=(2x+1)(x﹣a),即2x2+(2a﹣1)x﹣a=2x2﹣(2a﹣1)x﹣a,∴2a﹣1=0,解得a.故故答案为【题目点拨】本题主要考查函数奇偶性的定义和性质的应用,利用函数奇偶性的定义建立方程是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)记“甲连续射击4次至少有1次未击中目标”为事件A1.由题意,射击4次,相当于作4次独立重复试验.故P(A1)=所以甲连续射击4次至少有一次未击中目标的概率为.(2)记“甲射击4次,恰有2次击中目标”为事件A2,“乙射击4次,恰有3次击中目标”为事件B2,则P(A2)=,P(B2)=由于甲、乙射击相互独立,故P(A2B2)=所以两人各射击4次,甲恰有2次击中目标且乙恰有3次击中目标的概率为.18、(1);(2).【解题分析】
(1)由,得,由此能求出曲线C的直角坐标方程;(2)把代入,整理得,由,得,能求出直线l的斜率.【题目详解】(1)曲线C的极坐标方程为,所以.即,即.(2)把直线的参数方程带入得设此方程两根为,易知,而定点M在圆C外,所以,,,,可得,∴,所以直线的斜率为-1.【题目点拨】本题考查曲线的直角坐标方程的求法,考查直线的斜率的求法,考查极坐标方程、直角坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.19、(1)要使倾斜后容器内的溶液不会溢出,的最大值是45°(2)不能实现要求,详见解析【解题分析】
(1)当倾斜至上液面经过点B时,容器内溶液恰好不会溢出,此时最大.(2)当时,设剩余的液面为,比较与60°的大小后发现在上,计算此时倒出的液体体积,比小,从而得出结论.【题目详解】(1)如图③,当倾斜至上液面经过点B时,容器内溶液恰好不会溢出,此时最大.解法一:此时,梯形的面积等于,因为,所以,,即,解得,.所以,要使倾斜后容器内的溶液不会溢出,的最大值是45°.③解法二:此时,的面积等于图①中没有液体部分的面积,即,因为,所以,即,解得,.所以,要使倾斜后容器内的溶液不会溢出,的最大值是45°.(2)如图④,当时,设上液面为,因为,所以点F在线段上,④此时,,,剩余溶液的体积为,由题意,原来溶液的体积为,因为,所以倒出的溶液不满.所以,要倒出不少于的溶液,当时,不能实现要求.【题目点拨】本题考查三角函数的实际应用,解题关键是确定倾斜后容器内的溶液的液面位置,然后才能计算解决问题.20、(1);(2)单调递增区间为,,单调递减区间为;(3).【解题分析】试题分析:(1)由切点坐标及切点处的导数值为,即可列出方程组,求解,的值;(2)在的条件下,求解和,即可得到函数的单调区间;(3)在区间内存在单调递减区间,即在区间内有解,由此求解的取值范围.试题解析:(1),由题意得,即.(2)由(1)得,(),当时,,当时,,当时,.所以函数的单调递增区间为,,单调递减区间为.(3),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年内容营销与房地产推广的结合
- 2026年家居用品销售(需求分析)试题及答案
- 2025年中职广播电视学(广播电视基础)试题及答案
- 2026年扁平化管理与商务运营的成功案例
- 2025年大学计算机应用技术(网络系统基础)试题及答案
- 2026年幼儿教育(幼儿艺术教育)试题及答案
- 2025年中职第三学年(制冷和空调设备运行与维修)制冷设备安装工艺试题及答案
- 2025年中职(会计电算化)报表分析综合技能测试试题及答案
- 2026年物流调度(应急处理)试题及答案
- 2025年中职(药学类)药学综合实务综合测试试题及答案
- 2026年榆能集团陕西精益化工有限公司招聘备考题库完整答案详解
- 2026广东省环境科学研究院招聘专业技术人员16人笔试参考题库及答案解析
- 边坡支护安全监理实施细则范文(3篇)
- 6.1.3化学反应速率与反应限度(第3课时 化学反应的限度) 课件 高中化学新苏教版必修第二册(2022-2023学年)
- 北京市西城区第8中学2026届生物高二上期末学业质量监测模拟试题含解析
- 2026年辽宁轻工职业学院单招综合素质考试参考题库带答案解析
- 2026届北京市清华大学附中数学高二上期末调研模拟试题含解析
- 医院实习生安全培训课课件
- 四川省成都市武侯区西川中学2024-2025学年八上期末数学试卷(解析版)
- 2026年《必背60题》抖音本地生活BD经理高频面试题包含详细解答
- 《成人患者医用粘胶相关性皮肤损伤的预防及护理》团体标准解读2026
评论
0/150
提交评论