




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
忻州市重点中学2024届数学高二下期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若实数满足约束条件,且最大值为1,则的最大值为()A. B. C. D.2.若则有()A. B.C. D.3.已知数列的前项和为,,,则()A.128 B.256 C.512 D.10244.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(-1,1)的密度曲线)的点的个数的估计值为()附:若X∼N(μ,σ2),则PA.1193 B.1359 C.2718 D.34135.在平面直角坐标系中,曲线的参数方程为(为参数),直线的方程为,则曲线上的点到直线的距离的最小值是()A. B. C. D.6.若复数满足,则在复平面内,复数对应的点的坐标是()A. B. C. D.7.已知为自然对数的底数,若对任意的,总存在唯一的,使得成立,则实数的取值范围是()A. B. C. D.8.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,则集合中的元素共有()A.3个 B.4个 C.5个 D.6个9.在极坐标系中,直线被圆截得的弦长为()A. B.2 C. D.10.已知集合,集合,则A. B. C. D.11.下列求导计算正确的是()A. B. C. D.12.已知椭圆的右焦点为.短轴的一个端点为,直线交椭圆于两点.若,点到直线的距离不小于,则椭圆的离心率的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价(元)456789销量(件)908483807568由表中数据,求得线性回归方程为,则实数______.14.计算:_________15.若=,则x的值为_______.16.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系中,已知椭圆的离心率为,且过点.设为椭圆的右焦点,为椭圆上关于原点对称的两点,连结并延长,分别交椭圆于两点.(1)求椭圆的标准方程;(2)设直线的斜率分别为,是否存在实数,使得?若存在,求出实数的值;若不存在,请说明理由.18.(12分)在平面直角坐标系中,椭圆的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,直线经过椭圆的右焦点.(1)求实数的值;(2)设直线与椭圆相交于两点,求的值.19.(12分)如图,在空间几何体中,四边形是边长为2的正方形,,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.20.(12分)已知椭圆的离心率,左、右焦点分别为,且与抛物线的焦点重合.(1)求椭圆的标准方程;(2)若过的直线交椭圆于两点,过的直线交椭圆于两点,且,求的最小值.21.(12分)目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响某校随机抽取200名学生,对学习成绩和学案使用程度进行了调查,统计数据如下表所示:善于使用学案不善于使用学案合计学习成绩优秀40学习成绩一般30合计200已知随机抽查这200名学生中的一名学生,抽到善于使用学案的学生概率是0.6.参考公式:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(I)完成列联表(不用写计算过程);(Ⅱ)试运用独立性检验的思想方法分析有多大的把握认为学生的学习成绩与对待学案的使用态度有关?22.(10分)如图,四棱锥P﹣ABCD中,底面ABCD是一个菱形,三角形PAD是一个等腰三角形,∠BAD=∠PAD=,点E在线段PC上,且PE=3EC.(1)求证:AD⊥PB;(2)若平面PAD⊥平面ABCD,求二面角E﹣AB﹣P的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
首先画出可行域,根据目标函数的几何意义得到,再利用基本不等式的性质即可得到的最大值.【题目详解】由题知不等式组表示的可行域如下图所示:目标函数转化为,由图易得,直线在时,轴截距最大.所以.因为,即,当且仅当,即,时,取“”.故选:A【题目点拨】本题主要考查基本不等式求最值问题,同时考查了线性规划,属于中档题.2、D【解题分析】①,∵,∴,故.②,,∴,故.综上.选D.3、B【解题分析】
Sn+1=2Sn﹣1(n∈N+),n≥2时,Sn=2Sn﹣1﹣1,相减可得an+1=2an.再利用等比数列的通项公式即可得出.【题目详解】∵Sn+1=2Sn﹣1(n∈N+),n≥2时,Sn=2Sn﹣1﹣1,∴an+1=2an.n=1时,a1+a2=2a1﹣1,a1=2,a2=1.∴数列{an}从第二项开始为等比数列,公比为2.则a101×28=3.故选:B.【题目点拨】本题考查了数列递推关系、等比数列通项公式,考查了推理能力与计算能力,属于基础题.4、B【解题分析】由正态分布的性质可得,图中阴影部分的面积S=0.9545-0.6827则落入阴影部分(曲线C为正态分布N(-1,1)的密度曲线)的点的个数的估计值为本题选择B选项.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.5、B【解题分析】
设曲线上任意一点的坐标为,利用点到直线的距离公式结合辅助角公式可得出曲线上的点到直线的距离的最小值.【题目详解】设曲线上任意一点的坐标为,所以,曲线上的一点到直线的距离为,当时,取最小值,且,故选:B.【题目点拨】本题考查椭圆参数方程的应用,考查椭圆上的点到直线距离的最值问题,解题时可将椭圆上的点用参数方程表示,利用三角恒等变换思想求解,考查运算求解能力,属于中等题.6、D【解题分析】
利用复数的运算法则、几何意义即可得出.【题目详解】由题意iz=1+2i,∴iz(﹣i)=(1+2i)•(﹣i),∴z=2﹣i.则在复平面内,z所对应的点的坐标是(2,﹣1).故选D.【题目点拨】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.7、B【解题分析】,,故函数在区间上递增,,,故函数在上递减.所以,解得,故选B.8、A【解题分析】试题分析:,,所以,即集合中共有3个元素,故选A.考点:集合的运算.9、C【解题分析】试题分析:将极坐标化为直角坐标可得和,圆心到直线的距离,故,所以应选C.考点:极坐标方程与直角坐标之间的互化.【易错点晴】极坐标和参数方程是高中数学选修内容中的核心内容,也是高考必考的重要考点.解答这类问题时,一定要扎实掌握极坐标与之交坐标之间的关系,并学会运用这一关系进行等价转换.本题在解答时充分利用题设条件,运用将极坐标方程转化为直角坐标方程,最后通过直角坐标中的运算公式求出弦长,从而使问题巧妙获解.10、D【解题分析】,,则,选D.11、B【解题分析】
根据函数求导法则得到相应的结果.【题目详解】A选项应为,C选项应为,D选项应为.故选B.【题目点拨】这个题目考查了函数的求导运算,牢记公式,准确计算是解题的关键,属于基础题.12、A【解题分析】试题分析:设是椭圆的左焦点,由于直线过原点,因此两点关于原点对称,从而是平行四边形,所以,即,,设,则,所以,,即,又,所以,.故选A.考点:椭圆的几何性质.【名师点睛】本题考查椭圆的离心率的范围,因此要求得关系或范围,解题的关键是利用对称性得出就是,从而得,于是只有由点到直线的距离得出的范围,就得出的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.二、填空题:本题共4小题,每小题5分,共20分。13、106【解题分析】
求出样本中心坐标,代入回归方程即可求出值.【题目详解】解:,,将代入回归方程得,解得.故答案为:.【题目点拨】本题考查回归方程问题,属于基础题.14、【解题分析】
直接利用定积分公式计算即可。【题目详解】【题目点拨】本题主要考查了定积分计算,考查计算能力,属于基础题。15、4或9.【解题分析】分析:先根据组合数性质得,解方程得结果详解:因为=,所以因此点睛:组合数性质:16、【解题分析】
由面积为的半圆面,可得圆的半径为2,即圆锥的母线长为2.圆锥的底面周长为.所以底面半径为1.即可得到圆锥的高为.所以该圆锥的体积为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,使得.【解题分析】分析:(1)在椭圆上,所以满足椭圆方程,又离心率为,联立两个等式即可解出椭圆方程;(2),则,所以的方程为,联立AF的方程和椭圆方程即可求得C点坐标,同理求得D点坐标,从而分析的比值.详解:(1)设椭圆的方程为,,由题意知解得所以椭圆的方程为.(2)设,则,,又,所以直线的方程为.由消去,得.因为是该方程的一个解,所以点的横坐标.又点在直线上,所以,从而点的坐标为(同理,点的坐标为(,所以,即存在,使得.点睛:椭圆和抛物线的结合也是高考一直以来的一个热点,设而不求思想是圆锥曲线题目的考查核心,韦达定理就是该思想的体现,所以在圆锥曲线中要把所求的问题转化出来韦达定理,整体带入是解题的关键.18、(1);(2)【解题分析】
(1)利用消参,可得椭圆的普通方程,以及利用可得直线的直角坐标方程,然后利用直线过点,可得结果.(2)写出直线的参数方程,根据参数的几何意义,以及联立椭圆的普通方程,得到关于的一元二次方程,使用韦达定理,可得结果.【题目详解】(1)将曲线的参数方程(为参数),可得曲线的普通方程为,∴椭圆的右焦点直线的极坐标方程为,由,得∵直线过点,∴;(2)设点对应的参数分别为,将直线的参数方程(为参数)代入,化简得,则【题目点拨】本题考查极坐标方程,直角坐标方程以及参数方程的互化,重点在于对直线参数方程的几何意义的理解,难点在于计算,属中档题.19、(1)证明见解析.(2).【解题分析】试题分析:(1)先根据平几知识计算得,再根据线面垂直判定定理得结论,(2)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得平面法向量,利用向量数量积得向量夹角,最后根据线面角与向量夹角互余关系求结果.试题解析:(1)证明:等腰梯形中,故在中,,所以平面(2)作于,以为轴建立如图的空间直角坐标系,则求得平面的法向量为又,所以即与平面所成角的正弦值等于20、(1)椭圆的标准方程为;(2)的最小值为.【解题分析】试题分析:(1)由题可知)抛物线的焦点为,所以,然后根据离心率可得a值,从而得出椭圆标准方程(2)根据题意则需求出AC和BD的长度表达式,显然可以根据直线与椭圆的弦长公式求得,所以设,,直线的方程为,代入椭圆方程,,同理求出AC的长度,然后化简即得.解析:(1)抛物线的焦点为,所以,又因为,所以,所以,所以椭圆的标准方程为.(2)(i)当直线的斜率存在且时,直线的方程为,代入椭圆方程,并化简得.设,,则,,.易知的斜率为,所以..当,即时,上式取等号,故的最小值为.(ii)当直线的斜率不存在或等于零时,易得.综上,的最小值为.点睛:本题要熟悉椭圆标准方程的求解、直线与椭圆的位置关系问题,在求解椭圆中的最值问题时务必先求出表达式结合不等式即可得出结论,同时直线与椭圆的弦长公式也要非常熟悉21、(1)见详解(2)有99.9%的把握认为学生的学习成绩与对待学案的使用态度有关.【解题分析】
(1)由已知数据列列联表,
(2)由公式得:,结合参考数据下结论即可.【题目详解】(1)列联表:善于使用学案不善于使用学案合计学习成绩优秀405090学习成绩一般8030110合计12080200(2)由公式得:,故有99.9%的把握认为学生的学习成绩与对待学案的使用态度有关.【题目点拨】本题主要考查了列联表及的运算及用独立性检验的思想方法分析,属于中档题.22、(1)见解析;(2)【解题分析】
(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论