2024届湖南省邵东县两市镇第二中学数学高二第二学期期末监测模拟试题含解析_第1页
2024届湖南省邵东县两市镇第二中学数学高二第二学期期末监测模拟试题含解析_第2页
2024届湖南省邵东县两市镇第二中学数学高二第二学期期末监测模拟试题含解析_第3页
2024届湖南省邵东县两市镇第二中学数学高二第二学期期末监测模拟试题含解析_第4页
2024届湖南省邵东县两市镇第二中学数学高二第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省邵东县两市镇第二中学数学高二第二学期期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如果函数的图象如下图,那么导函数的图象可能是()A. B. C. D.2.已知袋中有编号为1、2、3、……、8的八只相同小球,现从中任取3只,则所取3只球的最大编号是5的概率等于()A. B. C. D.3.函数的最小正周期是()A. B. C. D.4.设,是实数,则的充要条件是()A. B. C. D.5.设抛物线的焦点为F,准线为l,P为抛物线上一点,,垂足为A,如果为正三角形,那么等于()A. B. C.6 D.126.若,则A.10 B.15 C.30 D.607.若能被整除,则的值可能为()A. B. C.x="5,n=4" D.8.设函数,集合,则图中的阴影部分表示的集合为()A. B.C. D.9.设函数,()A.3 B.6 C.9 D.1210.若函数,则()A.0 B.-1 C. D.111.等于()A.B.C.1D.12.、、、、、六名同学站成一排照相,其中、两人相邻的不同排法数是()A.720种 B.360种 C.240种 D.120种二、填空题:本题共4小题,每小题5分,共20分。13.在极坐标系中,过点并且与极轴垂直的直线方程是__________.14.设向量,,若与垂直,则的值为_____15.执行如图所示的伪代码,则输出的S的值是_______.16.如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知m是实数,关于x的方程E:x2﹣mx+(2m+1)=1.(1)若m=2,求方程E在复数范围内的解;(2)若方程E有两个虚数根x1,x2,且满足|x1﹣x2|=2,求m的值.18.(12分)某工厂生产某种型号的电视机零配件,为了预测今年月份该型号电视机零配件的市场需求量,以合理安排生产,工厂对本年度月份至月份该型号电视机零配件的销售量及销售单价进行了调查,销售单价(单位:元)和销售量(单位:千件)之间的组数据如下表所示:月份销售单价(元)销售量(千件)(1)根据1至月份的数据,求关于的线性回归方程(系数精确到);(2)结合(1)中的线性回归方程,假设该型号电视机零配件的生产成本为每件元,那么工厂如何制定月份的销售单价,才能使该月利润达到最大(计算结果精确到)?参考公式:回归直线方程,其中.参考数据:.19.(12分)已知正项数列{an}为等比数列,等差数列{bn}的前n项和为Sn(n∈N*),且满足:S11=208,S9﹣S7=41,a1=b2,a1=b1.(1)求数列{an},{bn}的通项公式;(2)设Tn=a1b1+a2b2+…+anbn(n∈N*),求Tn;(1)设,是否存在正整数m,使得cm·cm+1·cm+2+8=1(cm+cm+1+cm+2).20.(12分)甲,乙二人进行乒乓球比赛,已知每一局比赛甲胜乙的概率是,假设每局比赛结果相互独立.(Ⅰ)比赛采用三局两胜制,即先获得两局胜利的一方为获胜方,这时比赛结束.求在一场比赛中甲获得比赛胜利的概率;(Ⅱ)比赛采用三局两胜制,设随机变量为甲在一场比赛中获胜的局数,求的分布列和均值;(Ⅲ)有以下两种比赛方案:方案一,比赛采用五局三胜制;方案二,比赛采用七局四胜制.问哪个方案对甲更有利.(只要求直接写出结果)21.(12分)某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项指标值落在[20,40)内的产品视为合格品,否则为不合格品,图1是设备改造前样本的频率分布直方图,表1是设备改造后的频数分布表.表1,设备改造后样本的频数分布表:质量指标值频数2184814162(1)请估计该企业在设备改造前的产品质量指标的平均数;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在[25,30)内的定为一等品,每件售价240元,质量指标值落在[20,25)或[30,35)内的定为二等品,每件售价180元,其它的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率,现有一名顾客随机购买两件产品,设其支付的费用为X(单位:元),求X得分布列和数学期望.22.(10分)设函数(1)若函数在上递增,在上递减,求实数的值.(2))讨论在上的单调性;(3)若方程有两个不等实数根,求实数的取值范围,并证明.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】试题分析:的单调变化情况为先增后减、再增再减因此的符号变化情况为大于零、小于零、大于零、小于零,四个选项只有A符合,故选A.考点:1、函数的单调性与导数的关系;2、函数图象的应用.【方法点晴】本题通过对多个图象的选择考查函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.2、B【解题分析】

先求出袋中有编号为1、2、3、……、8的八只相同小球,现从中任取3只,有多少种取法,再求出所取3只球的最大编号是5有多少种取法,最后利用古典概型概率计算公式,求出概率即可.【题目详解】袋中有编号为1、2、3、……、8的八只相同小球,现从中任取3只,有种方法.所取3只球的最大编号是5,有种方法,所以所取3只球的最大编号是5的概率等于,故本题选B.【题目点拨】本题考查了古典概型概率计算方法,考查了数学运算能力.3、C【解题分析】

根据三角函数的周期公式,进行计算,即可求解.【题目详解】由角函数的周期公式,可得函数的周期,又由绝对值的周期减半,即为最小正周期为,故选C.【题目点拨】本题主要考查了三角函数的周期的计算,其中解答中熟记余弦函数的图象与性质是解答的关键,着重考查了计算与求解能力,属于基础题.4、C【解题分析】

利用不等式的基本性质证明与可进行互推.【题目详解】对选项C进行证明,即是的充要条件,必要性:若,则两边同时3次方式子仍成立,,成立;充分性:若成,两边开时开3次方根式子仍成立,,成立.【题目点拨】在证明充要条件时,要注意“必要性”与“充分性”的证明方向.5、C【解题分析】

设准线l与轴交于点,根据抛物线的定义和△APF为正三角形,这两个条件可以得出,在直角三角形中,利用正弦公式可以求出,即求出|PF|的长.【题目详解】设准线l与轴交于点,所以,根据抛物线的定义和△APF为正三角形,,在中,,,所以|PF|等于6,故本题选C.【题目点拨】本题考查了抛物线的定义.6、B【解题分析】

分析:由于,与已知对比可得的值1.详解:由于,与已知对比可得故选B.点睛:本题考查二项式定理的应用,观察分析得到是关键,考查分析与转化的能力,属于中档题.7、C【解题分析】

所以当时,能被整除,选C.8、C【解题分析】

根据集合的定义可知为定义域,为值域;根据对数型复合函数定义域的要求可求得集合,结合对数型复合函数单调性可求得值域,即集合;根据图可知阴影部分表示,利用集合交并补运算可求得结果.【题目详解】的定义域为:,即:在上单调递增,在上单调递减在上单调递增,在上单调递减;当时,;当时,的值域为:图中阴影部分表示:又,本题正确选项:【题目点拨】本题考查集合基本运算中的交并补混合运算,关键是能够明确两个集合表示的含义分别为函数的定义域和值域,利用对数型复合函数的定义域要求和单调性可求得两个集合;涉及到图的读取等知识.9、C【解题分析】.故选C.10、B【解题分析】

根据分段函数的解析式代入自变量即可求出函数值.【题目详解】因为,所以,,因为,所以,故,故选B.【题目点拨】本题主要考查了分段函数,属于中档题.11、A【解题分析】试题分析:因为,故选A.考点:定积分的运算.12、C【解题分析】

先把、两人捆绑在一起,然后再与其余四人全排列即可求出、两人相邻的不同排法数.【题目详解】首先把把、两人捆绑在一起,有种不同的排法,最后与其余四人全排列有种不同的排法,根据分步计算原理,、两人相邻的不同排法数是,故本题选C.【题目点拨】本题考查了全排列和分步计算原理,运用捆绑法是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由题意画出图形,结合三角形中的边角关系得答案.【题目详解】如图,由图可知,过点(1,0)并且与极轴垂直的直线方程是ρcosθ=1.故答案为.【题目点拨】本题考查了简单曲线的极坐标方程,是基础题.14、【解题分析】与垂直15、110【解题分析】

分析程序中各变量、各语句的作用,再根据顺序,可知:该程序的作用是累加并输出的值,利用等差数列的求和公式计算即可得解.【题目详解】分析程序中各变量、各语句的作用,根据顺序,可知:该程序的作用是累加并输出满足条件的值,由于,故输出的的值为:,故答案是:.【题目点拨】该题考查的用伪代码表示的循环结构的程序的相关计算,考查学生的运算求解能力,属于简单题目.16、【解题分析】

互为反函数的图象关于直线对称,所以两个阴影部分也关于直线对称.利用面积分割和定积分求出上部分阴影面积,再乘以2得到整个阴影面积.【题目详解】如图所示,连接,易得,,.【题目点拨】考查灵活运用函数图象的对称性和定积分求解几何概型,对逻辑思维能力要求较高.本题在求阴影部分面积时,只能先求上方部分,下方部分中学阶段无法直接求.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)x=1+2i,或x=1﹣2i(2)m=1,或m=2【解题分析】

(1)根据求根公式可求得结果;(2)根据实系数多项式虚根成对定理,不妨设x1=a+bi,则x2=a﹣bi,根据韦达定理以及|x1﹣x2|=2,可解得结果.【题目详解】(1)当m=2时,x2﹣mx+(2m+1)=x2﹣2x+5=1,∴x,∴x=1+2i,或x=1﹣2i.∴方程E在复数范围内的解为x=1+2i,或x=1﹣2i;(2)方程E有两个虚数根x1,x2,根据实系数多项式虚根成对定理,不妨设x1=a+bi,则x2=a﹣bi,∴x1+x2=2a=m,,∴∵|x1﹣x2|=|2bi|=2,∴b2=1,∴,∴m=1,或m=2.【题目点拨】本题考查了求根公式,考查了实系数多项式虚根成对定理,考查了韦达定理,属于中档题.18、(1)(2)7月份销售单价为10.8元时,该月利润才能达到最大.【解题分析】

(1)利用公式可计算线性回归方程.(2)利用(1)的回归方程可得7月份的利润函数,利用二次函数的性质可得其最大值.【题目详解】解:(1)由条件知,,,,从而,故关于的线性回归方程为.(2)假设7月份的销售单价为元,则由(1)可知,7月份零配件销量为,故7月份的利润,其对称轴,故7月份销售单价为10.8元时,该月利润才能达到最大.【题目点拨】本题考查线性回归方程的计算,注意线性回归方程所在的直线必定过点.此类问题是基础题.19、(1);(2);(1)存在,m=2.【解题分析】分析:(1)先根据已知条件列方程求出b1=﹣2,d=1,得到等差数列{bn}的通项,再求出,即得等比数列{an}的通项.(2)利用错位相减法求Tn.(1)对m分类讨论,探究是否存在正整数m,使得cm·cm+1·cm+2+8=1(cm+cm+1+cm+2).详解:(1)等差数列{bn}的前n项和为Sn(n∈N*),且满足:S11=208,S9﹣S7=41,即解得b7=16,公差为1,∴b1=﹣2,bn=1n﹣5,∵a1=b2=1,a1=b1=4,数列{an}为等比数列,∴an=2n﹣1,n∈N*(2)Tn=a1b1+a2b2+…+anbn=﹣2×1+1×2+…+(1n﹣5)2n﹣1,①∴2Tn=﹣2×2+1×22+…+(1n﹣5)2n,②①﹣①得﹣Tn=﹣2+1(2+22+…+2n﹣1)﹣(1n﹣5)2n=(8﹣1n)2n﹣8,∴Tn=(1n﹣8)2n+8,n∈N*(1)∵设,当m=1时,c1•c2•c1+8=1×1×4+8=12,1(c1+c2+c1)=18,不相等,当m=2时,c2•c1•c4+8=1×4×7+8=16,1(c2+c1+c4)=16,成立,当m≥1且为奇数时,cm,cm+2为偶数,cm+1为奇数,∴cm•cm+1•cm+2+8为偶数,1(cm+cm+1+cm+2)为奇数,不成立,当m≥4且为偶数时,若cm•cm+1•cm+2+8=1(cm+cm+1+cm+2),则(1m﹣5)•2m•(1m+1)+8=1(1m﹣5+2m+1m+1),即(9m2﹣12m﹣8)2m=18m﹣20,(*)∵(9m2﹣12m﹣8)2m≥(9m2﹣12m﹣8)24>18m﹣20,∴(*)不成立,综上所述m=2.点睛:(1)本题主要考查等差等比数列的通项的求法,考查错位相减法求和,考查数列的综合应用,意在考查对这些基础知识的掌握水平和分析推理能力基本运算能力.(2)本题的难点是第1问,关键是对m分m=1,m=2,m≥1且为奇数,m≥4且为偶数四种情况讨论.20、(Ⅰ)(Ⅱ)分布列见解析,E(X)(Ⅲ)方案二对甲更有利【解题分析】

(Ⅰ)甲获得比赛胜利包含二种情况:①甲连胜二局;②前二局甲一胜一负,第三局甲胜.由此能求出甲获得比赛胜利的概率.(Ⅱ)由已知得X的可能取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.(Ⅲ)方案二对甲更有利.【题目详解】(Ⅰ)甲获得比赛胜利包含二种情况:①甲连胜二局;②前二局甲一胜一负,第三局甲胜.∴甲获得比赛胜利的概率为:P=()2().(Ⅱ)由已知得X的可能取值为0,1,2,P(X=0)=()2,P(X=1),P(X=2)=()2().∴随机变量X的分布列为:X012P∴数学期望E(X).(Ⅲ)方案一,比赛采用五局三胜制;方案二,比赛采用七局四胜制.方案二对甲更有利.【题目点拨】本题考查概率、离散型随机变量的分布列、数学期望的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力及逻辑推理能力,是中档题.21、(1)30.2;(2)分布列见解析,400.【解题分析】

(1)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(2)的可能取值为:240,300,360,420,480,根据直方图求出样本中一、二、三等品的频率分别为,利用独立事件与互斥事件概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.【题目详解】(1)样本的质量指标平均值为.根据样本质量指标平均值估计总体质量指标平均值为30.2.(2)根据样本频率分布估计总体分布,样本中一、二、三等品的频率分别为,故从所有产品中随机抽一件,是一、二、三等品的概率分别为,随机变量的取值为:240,300,360,420,480,;,,所以随机变量的分布列为:2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论