2024届无锡市重点中学数学高二下期末质量跟踪监视模拟试题含解析_第1页
2024届无锡市重点中学数学高二下期末质量跟踪监视模拟试题含解析_第2页
2024届无锡市重点中学数学高二下期末质量跟踪监视模拟试题含解析_第3页
2024届无锡市重点中学数学高二下期末质量跟踪监视模拟试题含解析_第4页
2024届无锡市重点中学数学高二下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届无锡市重点中学数学高二下期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,用数学归纳法证明时,从假设推证成立时,需在左边的表达式上多加的项数为()A. B. C. D.12.设随机变量,且,,则()A. B.C. D.3.若函数的图象上存在关于直线对称的点,则实数的取值范围是()A. B. C. D.4.直线y=x与曲线y=xA.52 B.32 C.25.有张卡片分别写有数字,从中任取张,可排出不同的四位数个数为()A. B. C. D.6.已知函数,则在处的切线方程为()A. B. C. D.7.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()A.1440种 B.960种 C.720种 D.480种8.设全集,集合,,则()A. B. C. D.9.已知为虚数单位,复数,则复数的虚部为A. B. C. D.10.若角的终边上有一点,则的值是()A. B. C. D.11.已知平面向量,的夹角为,且,,则()A. B. C. D.12.若存在两个正实数,使得等式成立,其中为自然对数的底数,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列的前项和,若,,则__________.14.用1,2,3,4,5,6组成没有重复数字,且至少有一个数字是奇数的三位偶数,这样的三位数一共有______个.15.盒子里装有大小质量完全相同且分别标有数字1、2、3、4的四个小球,从盒子里随机摸出两个小球,那么事件“摸出的小球上标有的数字之和大于数字之积”的概率是______.16.若,则的值是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲、乙两个同学分別抛掷一枚质地均匀的骰子.(1)求他们抛掷的骰子向上的点数之和是4的倍数的概率;(2)求甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数的概率.18.(12分)已知椭圆的四个顶点围成的菱形的面积为,点与点分别为椭圆的上顶点与左焦点,且的面积为(点为坐标原点).(1)求的方程;(2)直线过且与椭圆交于两点,点关于的对称点为,求面积的最大值.19.(12分)每年的4月23日为“世界读书日”,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查,该调查机构从该校随机抽查了名不同性别的学生,现已得知人中喜爱阅读的学生占,统计情况如下表喜爱不喜爱合计男生女生合计(1)完成列联表,根据以上数据,能否有的把握认为是否喜爱阅读与被调查对象的性别有关?请说明理由:(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取位学生进行调查,求抽取的位学生中至少有人喜爱阅读的概率,(以下临界值及公式仅供参考),20.(12分)目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响某校随机抽取200名学生,对学习成绩和学案使用程度进行了调查,统计数据如下表所示:善于使用学案不善于使用学案合计学习成绩优秀40学习成绩一般30合计200已知随机抽查这200名学生中的一名学生,抽到善于使用学案的学生概率是0.6.参考公式:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(I)完成列联表(不用写计算过程);(Ⅱ)试运用独立性检验的思想方法分析有多大的把握认为学生的学习成绩与对待学案的使用态度有关?21.(12分)已知函数.(1)解不等式;(2)若对恒成立,求实数的取值范围.22.(10分)已知函数,(1)求的图象在处的切线方程并求函数的单调区间;(2)求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

分别计算和时的项数,相减得到答案.【题目详解】时,,共有项.时,,共有项.需在左边的表达式上多加的项数为:故答案选B【题目点拨】本题考查了数学归纳法,意在考查学生的计算能力.2、A【解题分析】

根据随机变量符合二项分布,根据二项分布的期望和方差公式得到关于,的方程组,注意两个方程之间的关系,把一个代入另一个,以整体思想来解决,求出的值,再求出的值,得到结果.【题目详解】解:随机变量,,,,①②把①代入②得,,故选:.【题目点拨】本题考查离散型随机变量的期望和方差,考查二项分布的期望和方差公式,属于基础题.3、D【解题分析】分析:设若函数的图象上存在关于直线对称的点,则函数与函数的图象有交点,即有解,利用导数法,可得实数a的取值范围.详解:由的反函数为,函数与的图象上存在关于直线对称的点,则函数与函数的图象有交点,即有解,即,令,则,当时,,在上单调递增,当时,可得求得的最小值为1.实数的取值范围是,故选:D.点睛:本题考查的知识点是函数图象的交点与方程根的关系,利用导数求函数的最值,难度中档.4、D【解题分析】

利用定积分的几何意义,首先利用定积分表示面积,然后计算即可.【题目详解】y=x与曲线y=xS=0故选:D.【题目点拨】本题考查了定积分的几何意义的应用,关键是正确利用定积分表示面积,属于基础题.5、C【解题分析】分析:根据题意,分四种情况讨论:①取出四张卡片中没有重复数字,即取出四张卡片中的数字为1,2,3,4;②取出四张卡片中4有2个重复数字,则2个重复的数字为1或2;③若取出的四张卡片为2张1和2张2;④取出四张卡片中有3个重复数字,则重复数字为1,分别求出每种情况下可以排出四位数的个数,由分类计数原理计算可得结论.详解:根据题意,分四种情况讨论:①取出四张卡片中没有重复数字,即取出四张卡片中的数字为1,2,3,4;此时有种顺序,可以排出24个四位数.②取出四张卡片中4有2个重复数字,则2个重复的数字为1或2,若重复的数字为1,在2,3,4中取出2个,有种取法,安排在四个位置中,有种情况,剩余位置安排数字1,可以排出个四位数同理,若重复的数字为2,也可以排出36个重复数字;③若取出的四张卡片为2张1和2张2,在4个位置安排两个1,有种情况,剩余位置安排两个2,则可以排出个四位数;④取出四张卡片中有3个重复数字,则重复数字为1,在2,3,4中取出1个卡片,有种取法,安排在四个位置中,有种情况,剩余位置安排1,可以排出个四位数,则一共有个四位数,故选C.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.6、C【解题分析】分析:求导得到在处的切线斜率,利用点斜式可得在处的切线方程.详解:已知函数,则则即在处的切线斜率为2,又则在处的切线方程为即.故选C.点睛:本题考查函数在一点处的切线方程的求法,属基础题.7、B【解题分析】5名志愿者先排成一排,有种方法,2位老人作一组插入其中,且两位老人有左右顺序,共有=960种不同的排法,选B.8、B【解题分析】

求得,即可求得,再求得,利用交集运算得解.【题目详解】由得:或,所以,所以由可得:或所以所以故选:B【题目点拨】本题主要考查了对数函数的性质,还考查了补集、交集的运算,属于基础题.9、B【解题分析】由题意得,所以复数的虚部为.选B.10、A【解题分析】

由题意利用任意角的三角函数的定义,求出的值.【题目详解】解:若角的终边上有一点,则

∴.

故选:A.【题目点拨】本题主要考查任意角的三角函数的定义,属于基础题.11、C【解题分析】分析:根据向量的运算,化简,由向量的数量积定义即可求得模长.详解:平面向量数量积,所以所以选C点睛:本题考查了向量的数量积及其模长的求法,关键是理解向量运算的原理,是基础题.12、D【解题分析】试题分析:由得,即,即设,则,则条件等价为,即有解,设,为增函数,∵,∴当时,,当时,,即当时,函数取得极小值为:,即,若有解,则,即,则或,故选D.考点:函数恒成立问题.【方法点晴】本题主要考查不等式恒成立问题,根据函数与方程的关系,转化为两个函数相交问题,利用构造法和导数法求出函数的极值和最值是解决本题的关键,综合性较强,难度较大根据函数与方程的关系将方程进行转化,利用换元法转化为方程有解,构造函数求函数的导数,利用函数极值和单调性的关系进行求解即可.二、填空题:本题共4小题,每小题5分,共20分。13、8【解题分析】

利用求解.【题目详解】,则.故答案为:8【题目点拨】本题主要考查等比数列的性质,意在考查学生对该知识的理解掌握水平,属于基础题.14、54【解题分析】

运用排列组合,先求出偶数的可能一共有多少个,然后减去三个数字都是偶数的情况【题目详解】当个位是偶数的时候共有种可能三个数字都是偶数时,有种可能则满足题意的三位数共有种故答案为【题目点拨】本题考查了排列组合的数字的排序问题,只要按照题目要求进行分类求出一共的情况,然后减去不符合情况即可得出结果15、【解题分析】

从盒子里随机摸出两个小球,基本事件总数,利用列举法求出事件“摸出的小球上标有的数字之和大于数字之积”包含的基本事件有3个,由此能求出事件“摸出的小球上标有的数字之和大于数字之积”的概率.【题目详解】解:盒子里装有大小质量完全相同且分别标有数字1、2、3、4的四个小球,从盒子里随机摸出两个小球,基本事件总数,事件“摸出的小球上标有的数字之和大于数字之积”包含的基本事件有:,,,共3个,事件“摸出的小球上标有的数字之和大于数字之积”的概率.故答案为.【题目点拨】本题考查概率的求法,考查列举法、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.16、2【解题分析】

利用赋值法,分别令代入式子即可求得的值.【题目详解】因为令,代入可得令,代入可得两式相减可得,即故答案为:2【题目点拨】本题考查了二项式定理的简单应用,赋值法求二项式系数的值是常用方法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】分析:(1)先求基本事件总数,再求点数之和是4的倍数事件数,最后根据古典概型概率公式求概率,(2)先求基本事件总数,再求甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数的事件数,最后根据古典概型概率公式求概率.详解:(1)记“他们抛掷的骰子向上的点数之和是4的倍数”为事件A,基本事件共有36个,事件A包含9个基本事件,故P(A)=;(2)记“甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数”为事件B,基本事件共有36个,事件B包含21个基本事件,故P(B)=.答(1)他们抛掷的骰子向上的点数之和是4的倍数的概率为.(2)甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数的概率为.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.18、(1);(2)见解析.【解题分析】分析:(1)由题意得,,即可求出答案;(2)设直线的方程为联立直线方程与椭圆方程,由韦达定理表述出,,又,化简整理即可.详解:(1)∵的面积为,∴,即.又∵椭圆的四个顶点围成的菱形的面积为,∴,即.∴,∴∴,∴的方程为.(2)由题意可知,点为的中点,则.设直线的方程为,联立,可得,∴,∴∴设,则∵函数在上单调递减,∴当时,取得最大值.点睛:有关圆锥曲线弦长、面积问题的求解方法(1)涉及弦长的问题中,应熟练地利用根与系数的关系、设而不求计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.(2)面积问题常采用S△=×底×高,其中底往往是弦长,而高用点到直线距离求解即可,选择底很重要,选择容易坐标化的弦长为底.有时根据所研究三角形的位置,灵活选择其面积表达形式.若求多边形的面积问题,常转化为三角形的面积后进行求解.(3)在求解有关直线与圆锥曲线的问题时,应注意数形结合、分类与整合、转化与化归及函数与方程思想的应用.19、(1)见解析;(2)【解题分析】

(1)补全列联表,计算,与临界值表对比得到答案.(2)喜爱阅读的人数为随机变量,将2人喜欢阅读,3人喜欢阅读概率相加得到答案.【题目详解】解:列联表如表喜爱不喜爱合计男生女生合计由表可知因为,所以有的把握认为是否喜爱阅读与被调查对象的性别有关.(2)设人中喜爱阅读的人数为随机变量,由题可知所以人中至少有人喜爱阅读的概率为所以【题目点拨】本题考查了列联表,概率的计算,意在考查学生的应用能力.20、(1)见详解(2)有99.9%的把握认为学生的学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论