




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届深圳大学师范学院附属中学高二数学第二学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.()A.0 B. C.1 D.22.一个篮球运动员投篮一次得3分的概率为,得2分的概率为,不得分的概率为(、、),已知他投篮一次得分的数学期望为2(不计其它得分情况),则的最大值为A. B. C. D.3.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是A.至少有一个白球;都是白球 B.至少有一个白球;至少有一个红球C.至少有一个白球;红、黑球各一个 D.恰有一个白球;一个白球一个黑球4.已知复数,则()A.1 B. C. D.55.若函数f(x)=2x+12xA.(-∞,-1) B.(C.(0,1) D.(1,+∞)6.已知椭圆的离心率为.双曲线的渐近线与椭圆有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆的方程为A. B.C. D.7.已知函数在上单调,则实数的取值范围为()A. B.C. D.8.“”是“复数在复平面内对应的点在第一象限”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知函数,的值域是,则实数的取值范围是()A.(1,2) B. C.(1,3) D.(1,4)10.下列集合中,表示空集的是()A. B.C. D.11.已知函数,,若,则()A. B. C. D.12.某同学将收集到的6组数据对,制作成如图所示的散点图(各点旁的数据为该点坐标),并由这6组数据计算得到回归直线:和相关系数.现给出以下3个结论:①;②直线恰过点;③.其中正确结论的序号是()A.①② B.①③ C.②③ D.①②③二、填空题:本题共4小题,每小题5分,共20分。13.两个圆锥有等长的母线,它们的侧面展开图恰好拼成一个圆,若它们的侧面积之比为,则它们的体积比是_____________.14.若一个直六棱柱的三视图如图所示,则这个直六棱柱的体积为.15.已知函数其中,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是________________.16.函数在闭区间上的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的焦距为2,左右焦点分别为,以原点为圆心,以椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)设不过原点的直线与椭圆C交于两点,若直线与的斜率分别为,且,求证:直线过定点,并求出该定点的坐标;18.(12分)已知函数.(1)讨论的单调性;(2)若恒成立,求的取值范围.19.(12分)如果,求实数的值.20.(12分)在平面直角坐标中,直线的参数方程为(为参数,为常数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设直线与曲线相交于、两点,若,求的值.21.(12分)设函数,其中实数是自然对数的底数.(1)若在上无极值点,求的值;(2)若存在,使得是在上的最大或最小值,求的取值范围.22.(10分)在平面直角坐标系中,过点作直线分别与x轴正半轴、y轴正半轴交于点A,B.(1)若,求直线的一般式方程;(2)求当取得最小值时直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
根据定积分的意义和性质,,计算即可得出.【题目详解】因为,故选C.【题目点拨】本题主要考查了含绝对值的被积函数的定积分求值,定积分的性质,属于中档题.2、D【解题分析】3a+2b+0c=2即3a+2b=2,所以,因此.3、C【解题分析】
由题意逐一考查所给的事件是否互斥、对立即可求得最终结果.【题目详解】袋中装有红球3个、白球2个、黑球1个,从中任取2个,逐一分析所给的选项:在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故B不成立;在C中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故C成立;在D中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故D不成立;本题选择C选项.【题目点拨】“互斥事件”与“对立事件”的区别:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.4、C【解题分析】.故选5、C【解题分析】
由f(x)为奇函数,根据奇函数的定义可求a,代入即可求解不等式.【题目详解】∵f(x)=2x∴f(﹣x)=﹣f(x)即2整理可得,1+∴1﹣a•2x=a﹣2x∴a=1,∴f(x)=2∵f(x))=2x∴2x+12整理可得,2x∴1<2x<2解可得,0<x<1故选C.【题目点拨】本题主要考查了奇函数的定义的应用及分式不等式的求解,属于基础试题.6、D【解题分析】
由题意,双曲线的渐近线方程为,∵以这四个交点为顶点的四边形为正方形,其面积为16,故边长为4,∴(2,2)在椭圆C:上,∴,∵,∴,∴,∴∴椭圆方程为:.故选D.考点:椭圆的标准方程及几何性质;双曲线的几何性质.7、D【解题分析】
求得导数,根据在上单调,得出或在上恒成立,分离参数构造新函数,利用导数求得新函数的单调性与最值,即可求解。【题目详解】由题意,函数,则,因为,在上单调,所以①当在上恒成立时,在上单调递增,即在上恒成立,则在上恒成立,令,,则在为增函数,∴.②当在上恒成立时,在上单调递减,即在上恒成立,则在上恒成立,同①可得,综上,可得或.故选:D.【题目点拨】本题主要考查了利用导数研究函数单调性、最值问题,用到了分离参数法求参数的范围,恒成立问题的处理及转化与化归思想是本题的灵魂,着重考查了推理与运算能力,属于偏难题.8、C【解题分析】
根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案.【题目详解】若复数在复平面内对应的点在第一象限,则解得,故“”是“复数在复平面内对应的点在第一象限”的充要条件.故选C.【题目点拨】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题.9、B【解题分析】
先求出当x≤2时,f(x)≥4,则根据条件得到当x>2时,f(x)=3+logax≥4恒成立,利用对数函数的单调性进行求解即可.【题目详解】当x≤2时,f(x)=﹣x+6≥4,要使f(x)的值域是[4,+∞),则当x>2时,f(x)=3+logax≥4恒成立,即logax≥1,若0<a<1,则不等式logax≥1不成立,当a>1时,则由logax≥1=logaa,则a≤x,∵x>2,∴a≤2,即1<a≤2,故选:D.【题目点拨】本题主要考查函数值域的应用,利用分段函数的表达式先求出当x≤2时的函数的值域是解决本题的关键.10、C【解题分析】
没有元素的集合是空集,逐一分析选项,得到答案.【题目详解】A.不是空集,集合里有一个元素,数字0,故不正确;B.集合由满足条件的上的点组成,不是空集,故不正确;C.,解得:或,都不是自然数,所以集合里没有元素,是空集,故正确;D.满足不等式的解为,所以集合表示,故不正确.故选:C【题目点拨】本题考查空集的判断,关键是理解空集的概念,意在考查分析问题和解决问题的能力.11、A【解题分析】分析:先求出g(1)=a﹣1,再代入f[g(1)]=1,得到|a﹣1|=0,问题得以解决.详解:∵f(x)=5|x|,g(x)=ax2﹣x(a∈R),f[g(1)]=1,∴g(1)=a﹣1,∴f[g(1)]=f(a﹣1)=5|a﹣1|=1=50,∴|a﹣1|=0,∴a=1,故答案为:A.点睛:本题主要考查了指数的性质,和函数值的求出,属于基础题.12、A【解题分析】
结合图像,计算,由求出,对选项中的命题判断正误即可得出结果.【题目详解】由图像可得,从左到右各点是上升排列的,变量具有正相关性,所以,①正确;由题中数据可得:,,所以回归直线过点,②正确;又,③错误.故选A【题目点拨】本题主要考查回归分析,以及变量间的相关性,熟记线性回归分析的基本思想即可,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
设圆锥母线长为,小圆锥半径为、高为,大圆锥半径为,高为,根据侧面积之比可得,再由圆锥侧面展幵扇形圆心角的公式得到,利用勾股定理得到关于的式子,从而将两个圆锥的体积都表示成的式子,,求出它们的比值.【题目详解】设圆锥母线长为,侧面积较小的圆锥半径为,侧面积较大的圆锥半径为,它们的高分别为,则,得,两圆锥的侧面展幵图恰好拼成一个圆,,得,再由勾股定理,得,同理可得,,两个圆锥的体积之比为,故答案为.【题目点拨】本题主要考查圆锥的性质与侧面积,意在考查对基础知识的掌握与应用,属于中档题.14、4【解题分析】试题分析:由题意,.考点:三视图与体积.15、【解题分析】试题分析:由题意画出函数图象如下图所示,要满足存在实数b,使得关于x的方程f(x)=b有三个不同的根,则,解得,故m的取值范围是.【考点】分段函数,函数图象【名师点睛】本题主要考查二次函数的图象与性质、函数与方程、分段函数的概念.解答本题,关键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.本题能较好地考查考生数形结合思想、转化与化归思想、基本运算求解能力等.16、3【解题分析】
先求出函数的导数,在闭区间上,利用导数求出函数的极值,然后与进行比较,求出最大值.【题目详解】,当时,,函数单调递增,当时,,函数单调递减,所以是函数的极大值点,即,,,所以函数在闭区间上的最大值为3.【题目点拨】本题考查了闭区间上函数的最大值问题.解决此类问题的关键是在闭区间上先利用导数求出极值,然后求端点的函数值,最后进行比较,求出最大值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)线恒过定点,详见解析【解题分析】
(1)根据焦距得到,根据圆心到直线的距离得到,由得到,从而得到椭圆方程;(2)直线,联立得到,然后表示,代入韦达定理,得到和的关系,从而得到直线过的定点.【题目详解】(1)由题意可得,即,由直线与圆相切,可得,解得,即有椭圆的方程为;(2)证明:设,将直线代入椭圆,可得,即有,,由,即有,代入韦达定理,可得,化简可得,则直线的方程为,即,故直线恒过定点;【题目点拨】本题考查求椭圆方程,直线与椭圆的关系,椭圆中的定点问题,属于中档题.18、(1)见解析;(2).【解题分析】
(1)求出,分或两种情况讨论(2)由,得恒成立,则恒成立,然后利用导数求出右边的最大值即可【题目详解】解:(1)易知,,(i)当时对任意的恒成立;(ⅱ)当时,若,得若,得,综上,当时在上单调递增;当时,在上单调递增,在上单调递减.(2)由,得恒成立,则恒成立,令,,则令,,则,∴在上单调递减,又∵,∴在上,即;在上,即,∴在上单调递增,在上单调递减,∴,故,即的取值范围为.【题目点拨】恒成立问题首选的方法是通过分离变量,转化为最值问题.19、【解题分析】分析:由复数相等的充分必要条件得到关于x,y的方程组,求解方程组可得.详解:由题意得,解得.点睛:本题主要考查复数相等的充分必要条件及其应用等知识,意在考查学生的转化能力和计算求解能力.20、(1);(2)【解题分析】
(1)消去参数可得的普通方程,再根据两边乘以,根据极坐标与直角坐标的关系化简即可.(2)联立直线的参数方程与曲线的直角坐标方程,利用直线参数的几何意义与韦达定理求解即可.【题目详解】解:(1)直线的参数方程为(为参数,为常数),消去参数得的普通方程为.由,得即,整理得.故曲线的直角坐标方程为.(2)将直线的参数方程代入曲线中得,于是由,解得,且,,,解得.【题目点拨】本题主要考查了极坐标与参数方程和直角坐标的互化,同时也考查了直线参数的几何意义,属于中档题.21、(1)(2)【解题分析】试题分析:(1)结合的导函数与极值的关系可得;(2)结合的解析式分类讨论①或;②两种情况可得的取值范围是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英语名词初三试题及答案
- 建筑施工安全技术交底试题及答案
- 研究性化学课题试题及答案
- 环山考场科四试题及答案
- 安全工程师施工环境的风险控制策略试题及答案
- 建筑材料装饰试题及答案
- 施工现场职业健康管理试题及答案
- 潜移默化影响乐理考试的技巧试题及答案
- 文山中考语文试题及答案
- 着眼未来的创业政策试题及答案
- 中国医疗器械发展史
- 2024企业网络安全意识培训
- 苏科版八年级数学下册题型突破提高类型五、反比例函数与一次函数结合求不等式解集与面积(原卷版+解析)
- 扬州酒店行业分析
- 动态血糖管理-动态血糖监测CGM
- 2023年江苏无锡市初中学业水平考试地理试卷真题(答案详解)
- 愚公移山英文 -中国故事英文版课件
- GB/T 4744-2013纺织品防水性能的检测和评价静水压法
- GB/T 24267-2009建筑用阻燃密封胶
- 2022年陕西省高中学业水平考试政治题(原题)
- 一带一路论文参考文献(70个范例参考),参考文献
评论
0/150
提交评论