北京市东城区汇文中学2024届数学高二第二学期期末考试试题含解析_第1页
北京市东城区汇文中学2024届数学高二第二学期期末考试试题含解析_第2页
北京市东城区汇文中学2024届数学高二第二学期期末考试试题含解析_第3页
北京市东城区汇文中学2024届数学高二第二学期期末考试试题含解析_第4页
北京市东城区汇文中学2024届数学高二第二学期期末考试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市东城区汇文中学2024届数学高二第二学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知扇形的圆心角为,弧长为,则扇形的半径为()A.7 B.6 C.5 D.42.已知椭圆(为参数)与轴正半轴,轴正半轴的交点分别为,动点是椭圆上任一点,则面积的最大值为()A. B. C. D.3.古印度“汉诺塔问题”:一块黄铜平板上装着A,B,C三根金铜石细柱,其中细柱A上套着个大小不等的环形金盘,大的在下、小的在上.将这些盘子全部转移到另一根柱子上,移动规则如下:一次只能将一个金盘从一根柱子转移到另外一根柱子上,不允许将较大盘子放在较小盘子上面.若A柱上现有3个金盘(如图),将A柱上的金盘全部移到B柱上,至少需要移动次数为()A.5 B.7 C.9 D.114.已知点为双曲线的对称中心,过点的两条直线与的夹角为,直线与双曲线相交于点,直线与双曲线相交于点,若使成立的直线与有且只有一对,则双曲线离心率的取值范围是()A. B. C. D.5.若对任意正数x,不等式恒成立,则实数的最小值()A.1 B. C. D.6.某电子管正品率为,次品率为,现对该批电子管进行测试,那么在五次测试中恰有三次测到正品的概率是()A. B. C. D.7.若圆和圆相切,则等于()A.6 B.7 C.8 D.98.某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为,则该生产厂家获取的最大年利润为()A.300万元 B.252万元 C.200万元 D.128万元9.已知向量满足,且,则的夹角为()A. B. C. D.10.已知函数,,若,则()A. B. C. D.11.若身高和体重的回归模型为,则下列叙述正确的是()A.身高与体重是负相关 B.回归直线必定经过一个样本点C.身高的人体重一定时 D.身高与体重是正相关12.已知,集合,集合,则从M到N的函数个数是()A.6561 B.3363 C.2187 D.210二、填空题:本题共4小题,每小题5分,共20分。13.正方体中,、分别是、的中点,则直线与平面所成角的正弦值为______.14.已知一组数据1,3,2,5,4,那么这组数据的方差为____.15.如图,设是棱长为的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体,则关于此多面体有以下结论:①有个顶点;②有条棱;③有个面;④表面积为;⑤体积为.其中正确的结论是____________.(要求填上所有正确结论的序号)16.设正方形的中心为,在以五个点、、、、为顶点的三角形中任意取出两个,则它们面积相等的概率为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知二项式的展开式中第五项为常数项.(1)求展开式中二项式系数最大的项;(2)求展开式中有理项的系数和.18.(12分)甲、乙两人进行某项对抗性游戏,采用“七局四胜”制,即先赢四局者为胜,若甲、乙两人水平相当,且已知甲先赢了前两局.(Ⅰ)求乙取胜的概率;(Ⅱ)记比赛局数为X,求X的分布列及数学期望E(X).19.(12分)某市要对该市六年级学生进行体育素质调查测试,现让学生从“跳绳、短跑米、长跑米、仰卧起坐、游泳米、立定跳远”项中选择项进行测试,其中“短跑、长跑、仰卧起坐”项中至少选择其中项进行测试.现从该市六年级学生中随机抽取了名学生进行调查,他们选择的项目中包含“短跑、长跑、仰卧起坐”的项目个数及人数统计如下表:(其中)选择的项目中包含“短跑、长跑、仰卧起坐”的项目个数人数已知从所调查的名学生中任选名,他们选择“短跑、长跑、仰卧起坐”的项目个数不相等概率为,记为这名学生选择“短跑、长跑、仰卧起坐”的项目个数之和.(1)求的值;(2)求随机变量的分布列和数学期望.20.(12分)按照国家质量标准:某种工业产品的质量指标值落在内,则为合格品,否则为不合格品.某企业有甲乙两套设备生产这种产品,为了检测这两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本对规定的质量指标值进行检测.表1是甲套设备的样本频数分布表,图1是乙套设备的样本频率分布直方图.表1:甲套设备的样本频数分布表(1)将频率视为概率,若乙套设备生产了5000件产品,则其中合格品约有多少件?(2)填写下面2×2列联表,并根据列联表判断是否有95%的把握认为这种产品的质量指标值与甲乙两套设备的选择有关:21.(12分)为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.分数[50,59)[60,69)[70,79)[80,89)[90,100]甲班频数56441乙班频数13655(1)由以上统计数据填写下面2×2列联表,并判断“成绩优良与教学方式是否有关”?甲班乙班总计成绩优良成绩不优良总计现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为,求的分布列及数学期望.附:.临界值表22.(10分)已知分别为内角的对边,且.(1)求角A;(2)若,求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

求得圆心角的弧度数,用求得扇形半径.【题目详解】依题意为,所以.故选B.【题目点拨】本小题主要考查角度制和弧度制转化,考查扇形的弧长公式的运用,属于基础题.2、B【解题分析】分析:根据椭圆的方程算出A(4,1)、B(1,3),从而得到|AB|=5且直线AB:3x+4y﹣12=1.设点P(4cosθ,3sinθ),由点到直线的距离公式算出P到直线AB距离为d=|sin﹣1|,结合三角函数的图象与性质算出dmax=(),由此结合三角形面积公式,即可得到△PAB面积的最大值.详解:由题得椭圆C方程为:,∴椭圆与x正半轴交于点A(4,1),与y正半轴的交于点B(1,3),∵P是椭圆上任一个动点,设点P(4cosθ,3sinθ)(θ∈[1,2π])∴点P到直线AB:3x+4y﹣12=1的距离为d==|sin﹣1|,由此可得:当θ=时,dmax=()∴△PAB面积的最大值为S=|AB|×dmax=6().点睛:(1)本题主要考查椭圆的参数方程和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力计算能力.(2)对于|sin﹣1|,不是sin=1时,整个函数取最大值,而应该是sin=-1,要看后面的“-1”.3、B【解题分析】

设细柱A上套着n个大小不等的环形金盘,至少需要移动次数记为an,则a【题目详解】设细柱A上套着n个大小不等的环形金盘,至少需要移动次数记为an要把最下面的第n个金盘移到另一个柱子上,则必须把上面的n-1个金盘移到余下的一个柱子上,故至少需要移动an-1把第n个金盘移到另一个柱子上后,再把n-1个金盘移到该柱子上,故又至少移动an-1次,所以aa1=1,故a2【题目点拨】本题考查数列的应用,要求根据问题情境构建数列的递推关系,从而解决与数列有关的数学问题.4、A【解题分析】

根据双曲线渐近线以及夹角关系列不等式,解得结果【题目详解】不妨设双曲线方程为,则渐近线方程为因为使成立的直线与有且只有一对,所以从而离心率,选A.【题目点拨】本题考查求双曲线离心率取值范围,考查综合分析求解能力,属较难题.5、D【解题分析】分析:由题意可得恒成立,利用基本不等式求得的最大值为,从而求得实数的最小值.详解:由题意可得恒成立.

由于(当且仅当时取等号),故的最大值为,,即得最小值为,

故选D.点睛:本题主要考查函数的恒成立问题,基本不等式的应用,属于基础题.6、D【解题分析】

根据二项分布独立重复试验的概率求出所求事件的概率。【题目详解】由题意可知,五次测试中恰有三次测到正品,则有两次测到次品,根据独立重复试验的概率公式可知,所求事件的概率为,故选:D。【题目点拨】本题考查独立重复试验概率的计算,主要考查学生对于事件基本属性的判断以及对公式的理解,考查运算求解能力,属于基础题。7、C【解题分析】

根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得的值并验证即可得结果.【题目详解】圆的圆心,半径为5;圆的圆心,半径为r.若它们相内切,则圆心距等于半径之差,即=|r-5|,求得r=18或-8,不满足5<r<10.若它们相外切,则圆心距等于半径之和,即=|r+5|,求得r=8或-18(舍去),故选C.【题目点拨】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题.两圆半径为,两圆心间的距离为,比较与及与的大小,即可得到两圆的位置关系.8、C【解题分析】

求得函数的导数,得到函数的单调性,进而求解函数的最大值,即可得到答案.【题目详解】由题意,函数,所以,当时,,函数为单调递增函数;当时,,函数为单调递减函数,所以当时,有最大值,此时最大值为200万元,故选C.【题目点拨】本题主要考查了利用导数研究函数的单调性与最值问题,其中解答中熟记函数的导数在函数中的应用,准确判定函数的单调性是解答的关键,着重考查了推理与计算能力,属于基础题.9、C【解题分析】

设的夹角为,两边平方化简即得解.【题目详解】设的夹角为,两边平方,得,即,又,所以,则,所以.故选C【题目点拨】本题主要考查平面向量的数量积的计算和向量夹角的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.10、A【解题分析】分析:先求出g(1)=a﹣1,再代入f[g(1)]=1,得到|a﹣1|=0,问题得以解决.详解:∵f(x)=5|x|,g(x)=ax2﹣x(a∈R),f[g(1)]=1,∴g(1)=a﹣1,∴f[g(1)]=f(a﹣1)=5|a﹣1|=1=50,∴|a﹣1|=0,∴a=1,故答案为:A.点睛:本题主要考查了指数的性质,和函数值的求出,属于基础题.11、D【解题分析】

由线性回归直线方程可得回归系数大于0,所以正相关,且经过样本中心,且为估计值,即可得到结论.【题目详解】可得,可得身高与体重是正相关,错误,正确;回归直可以不经过每一个样本点,一定过样本中心点,,故错误;若,可得,即体重可能是,故错误.故选.【题目点拨】本题考查线性回归中心方程和运用,考查方程思想和估计思想,属于基础题.12、C【解题分析】

由(1+x)8=a0+a1x+a2x2+…+a77x+a8x8,可得a0=a8=1,a2=a6=28,a4=1.即可得集合有7个元素,利用函数定义可得从M到N的函数个数.【题目详解】解:由,可得,,.∴,共7个元素,则从M到N的函数个数是.故选:C.【题目点拨】本题主要考查二项式定理的应用,及函数定义,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】

设正方体的棱长为,以点为坐标原点,、、所在直线分别为轴、轴、轴建立空间直角坐标系,计算出平面的一个法向量,利用空间向量法计算出直线与平面所成角的正弦值.【题目详解】设正方体的棱长为,以点为坐标原点,、、所在直线分别为轴、轴、轴建立如下图所示空间直角坐标系.则点、、、、、,设平面的一个法向量为,则,.由,即,得,令,则,.可知平面的一个法向量为,又.,因此,直线与平面所成角的正弦值为,故答案为.【题目点拨】本题考查直线与平面所成角的正弦的计算,解题的关键就是建立空间直角坐标系,将问题利用空间向量法进行求解,考查运算求解能力,属于中等题.14、2;【解题分析】

先求这组数据的平均数,再代入方差公式,求方差.【题目详解】因为,方差.【题目点拨】本题考查平均数与方差公式的简单应用,考查基本的数据处理能力.15、①②⑤【解题分析】解:如图,原来的六个面还在只不过是变成了一个小正方形,再添了八个顶点各对应的一个三角形的面,所以总计6+8=14个面,故③错;每个正方形4条边,每个三角形3条边,4×6+3×8=48,考虑到每条边对应两个面,所以实际只有×48=24条棱.②正确;所有的顶点都出现在原来正方体的棱的中点位置,原来的棱的数目是1,所以现在的顶点的数目是1.或者从图片上可以看出每个顶点对应4条棱,每条棱很明显对应两个顶点,所以顶点数是棱数的一半即1个.①正确;三角形和四边形的边长都是a,所以正方形总面积为6××a2=3a2,三角形总面积为8××a2sin60°=a2,表面积(3+)a2,故④错;体积为原正方形体积减去8个三棱锥体积,每个三棱锥体积为8×()3=a2,剩余总体积为a3-a3=a3⑤正确.故答案为①②⑤.16、【解题分析】

先确定以五个点、、、、为顶点的三角形的个数,再确定从中取出两个的事件数,从中取出两个面积相等的事件数,最后根据古典概型概率公式求结果.【题目详解】以五个点、、、、为顶点的三角形共有,则从中取出两个有种方法;因为,因此从中取出两个面积相等有种方法;从而所求概率为故答案为:【题目点拨】本题考查古典概型概率以及简单计数,考查综合分析求解能力,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)121【解题分析】

(1),为常数项,所以,可求出的值,进而求得二项式系数最大的项;(2)由题意为有理项,直接计算即可.【题目详解】(1),∵为常数项,∴,∴二项式系数最大的项为第3项和第4项.∴,.(2)由题意为有理项,有理项系数和为.【题目点拨】本题考查了二项式的展开式,需熟记二项式展开式的通项,属于基础题.18、(I)316【解题分析】

(Ⅰ)乙取胜有两种情况一是乙连胜四局,二是第三局到第六局中乙胜三局,第七局乙胜,由互斥事件的概率公式与根据独立事件概率公式能求出乙胜概率;(Ⅱ)由题意得X=4,5,6,7,结合组合知识,利用独立事件概率公式及互斥事件的概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得X的数学期望E(X).【题目详解】(Ⅰ)乙取胜有两种情况一是乙连胜四局,其概率p1二是第三局到第六局中乙胜三局,第七局乙胜,其概率p2∴乙胜概率为p=p(Ⅱ)由题意得X=4,5,6,7,P(X=4)=(1P(X=5)=CP(X=6)=(1P(X=7)=C所以ξ的分布列为ξ4567P1111EX=(4+5+6+7)×1【题目点拨】本题主要考查互斥事件的概率公式、独立事件同时发生的概率公式以及离散型随机变量的分布列与数学期望,属于中档题.求解数学期望问题,首先要正确理解题意,其次要准确无误的找出随机变量的所有可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.19、(1)(2)见解析【解题分析】分析:(1)由题意结合概率公式得到关于x的方程,解方程可得.(2)由题意可知的可能取值分别为,,,,,该分布列为超几何分布,据此可得到分布列,利用分布列计算数学期望为.详解:(1)记“选择短跑、长跑、仰卧起坐的项目个数相等”为事件,则:,所以,解得或,因为,所以.(2)由题意可知的可能取值分别为,,,,,则,,,,.从而的分布列为:数学期望为.点睛:本题的核心在考查超几何分布.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考查对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体个数X的概率分布,超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.20、(1)800件;(2)见解析;【解题分析】

(1)结合频数分布表,求出满足条件的概率,再乘以5000即可;(2)求出2×2列联表,计算K2值,判断即可【题目详解】(1)由图知,乙套设备生产的不合格品率约为;∴乙套设备生产的5000件产品中不合格品约为(件);(2)由表1和图得到列联表:甲套设备乙套设备合计合格品484290不合格品2810合计5050100将列联表中的数据代入公式计算得;∴有95%的把握认为产品的质量指标值与甲、乙两套设备的选择有关;【题目点拨】本题考查了频率分布直方图与独立性检验的应用问题,准确计算是关键,是基础题.21、(1)在犯错概率不超过0.05的前提下认为“成绩优良与教学方式有关”.(2)见解析【解题分析】

(1)根据数据对应填写,再根据卡方公式求,最后对照参考数据作判断,(2)先根据分层抽样得成绩不优良的人数,再确定随机变量取法,利用组合数求对应概率,列表得分布列,最后根据数学期望公式求期望.【题目详解】解:(1)根据2×2列联表中的数据,得的观测值为,在犯错概率不超过0.05的前提下

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论