湖南省株洲市醴陵四中2024届数学高二下期末综合测试模拟试题含解析_第1页
湖南省株洲市醴陵四中2024届数学高二下期末综合测试模拟试题含解析_第2页
湖南省株洲市醴陵四中2024届数学高二下期末综合测试模拟试题含解析_第3页
湖南省株洲市醴陵四中2024届数学高二下期末综合测试模拟试题含解析_第4页
湖南省株洲市醴陵四中2024届数学高二下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省株洲市醴陵四中2024届数学高二下期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示正方形,、分别是、的中点,则向正方形内随机掷一点,该点落在阴影部分内的概率为()A. B. C. D.2.已知为抛物线上的不同两点,为抛物线的焦点,若,则()A. B.10 C. D.63.已知复数z=1+i1-i(i是虚数单位),则A.-i B.-1 C.i D.4.某三棱锥的三视图如图所示,则该三棱锥四个面的面积中最大的是A. B.3C. D.5.在回归分析中,的值越大,说明残差平方和()A.越小 B.越大 C.可能大也可能小 D.以上都不对6.为了得到函数的图象,可以将函数的图象()A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度7.若集合,,若,则的值为()A. B. C.或 D.或8.点M的极坐标为(1,π),则它的直角坐标为()A.(1,0) B.(,0) C.(0,1) D.(0,)9.设,,则A. B.C. D.10.己知函数,若,则()A. B. C. D.11.复数的虚部是()A.1 B.﹣i C.i D.﹣112.连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设关于x,y的不等式组表示的平面区域为.记区域上的点与点距离的最小值为,若,则的取值范围是__________;14.已知在区间[2,+∞)上为减函数,则实数a的取值范围是______.15.已知椭圆的左、右焦点分别为,为椭圆上一点,且,若关于平分线的对称点在椭圆上,则该椭圆的离心率为______.16.120,168的最大公约数是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(I)当时,求曲线在点处的切线方程;(Ⅱ)若在区间上单调递增,求的取值范围;(Ⅲ)求在上的最小值.18.(12分)某轮胎集团有限公司生产的轮胎的宽度(单位:)服从正态分布,公司规定:轮胎宽度不在内将被退回生产部重新生产.(1)求此轮胎不被退回的概率(结果精确到);(2)现在该公司有一批轮胎需要进行初步质检,检验方案是从这批轮胎中任取件作检验,这件产品中至少有件不被退回生产部,则称这批轮胎初步质检合格.(¡)求这批轮胎初步质检合格的概率;(¡¡)若质检部连续质检了批轮胎,记为这批轮胎中初步质检合格的批数,求的数学期望.附:若,则.19.(12分)已知函数f(x)=ln|x|①当x≠0时,求函数y=g(x②若a>0,函数y=g(x)在0,+∞上的最小值是2,求③在②的条件下,求直线y=23x+20.(12分)在同一直角坐标系中,经过伸缩变换后,曲线C的方程变为.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线/的极坐标方程为.(1)求曲线C和直线l的直角坐标方程;(2)过点作l的垂线l0交C于A,B两点,点A在x轴上方,求的值.21.(12分)全民健身倡导全民做到每天参加一次以上的体育健身活动,旨在全面提高国民体质和健康水平.某市的体育部门对某小区的4000人进行了“运动参与度”统计评分(满分100分),得到了如下的频率分布直方图:(1)求这4000人的“运动参与度”的平均得分(同一组中数据用该组区间中点作代表);(2)由直方图可认为这4000人的“运动参与度”的得分服从正态分布,其中,分别取平均得分和方差,那么选取的4000人中“运动参与度”得分超过84.81分(含84.81分)的人数估计有多少人?(3)如果用这4000人得分的情况来估计全市所有人的得分情况,现从全市随机抽取4人,记“运动参与度”的得分不超过84.81分的人数为,求.(精确到0.001)附:①,;②,则,;③.22.(10分)如图,四棱锥中,底面为平行四边形,底面,是棱的中点,且.(1)求证:平面;(2)如果是棱上一点,且直线与平面所成角的正弦值为,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

根据正方形的对称性求得阴影部分面积占总面积的比例,由此求得所求概率.【题目详解】根据正方形的对称性可知,阴影部分面积占总面积的四分之一,根据几何概型概率计算公式可知点落在阴影部分内的概率为,故选D.【题目点拨】本小题主要考查几何概型的计算,属于基础题.2、C【解题分析】

设,根据,可求得这些坐标间的关系,再结合两点在抛物线上,可求得,而,由此可得结论.【题目详解】设,则,又,∴,∴,,∴,由,得,∴.故选C.【题目点拨】本题考查向量的数乘的意义,考查抛物线的焦点弦问题.掌握焦点弦长公式是解题基础:即对抛物线而言,,是抛物线的过焦点的弦,则.3、D【解题分析】

先利用复数的除法将复数z表示为一般形式,于是可得出复数z的虚部。【题目详解】∵z=1+i1-i=1+i21-i1+i【题目点拨】本题考查复数的概念,解决复数问题,一般利用复数的四则运算律将复数表示为一把形式,考查计算能力,属于基础题。4、C【解题分析】作出三棱锥P−ABC的直观图如图所示,过A作AD⊥BC,垂足为D,连结PD.由三视图可知PA⊥平面ABC,BD=AD=1,CD=PA=2,∴.∴,.∴三棱锥P−ABC的四个面中,侧面PBC的面积最大.故选C.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.5、A【解题分析】分析:根据的公式和性质,并结合残差平方和的意义可得结论.详解:用相关指数的值判断模型的拟合效果时,当的值越大时,模型的拟合效果越好,此时说明残差平方和越小;当的值越小时,模型的拟合效果越差,此时说明残差平方和越大.故选A.点睛:主要考查对回归分析的基本思想及其初步应用等知识的理解,解题的关键是熟知有关的概念和性质,并结合条件得到答案.6、B【解题分析】

由三角函数的诱导公式可得,再结合三角函数图像的平移变换即可得解.【题目详解】解:由,即为了得到函数的图象,可以将函数的图象向右平移个单位长度,故选:B.【题目点拨】本题考查了三角函数图像的平移变换及三角函数的诱导公式,属基础题.7、A【解题分析】

先解出集合,由,得出,于此可得知实数的值.【题目详解】解方程,即,得,由于,,则,,,,故选:A.【题目点拨】本题考查集合间的包含关系,利用包含关系求参数的值,解本题的关键就是将集合表示出来,考查计算能力,属于基础题。8、B【解题分析】

将极坐标代入极坐标与直角坐标之间的互化公式,即可得到直角坐标方程.【题目详解】将极坐标代入互化公式得:,,所以直角坐标为:.故选B.【题目点拨】本题考查极坐标化为直角坐标的公式,注意特殊角三角函数值不要出错.9、B【解题分析】

分析:求出,得到的范围,进而可得结果.详解:.,即又即故选B.点睛:本题主要考查对数的运算和不等式,属于中档题.10、D【解题分析】分析:首先将自变量代入函数解析式,利用指对式的运算性质,得到关于参数的等量关系式,即可求得结果.详解:根据题意有,解得,故选D.点睛:该题考查的是已知函数值求自变量的问题,在求解的过程中,需要对指数式和对数式的运算性质了如指掌.11、D【解题分析】

利用复数的运算法则、虚部的定义即可得出.【题目详解】解:∵复数,∴复数的虚部是﹣1,故选:D.【题目点拨】本题考查了复数的运算法则、虚部的定义,属于基础题.12、C【解题分析】

由,得出,计算出基本事件的总数以及事件所包含的基本事件数,然后利用古典概型的概率公式可计算出所求事件的概率.【题目详解】,,即,事件“”所包含的基本事件有:、、、、、、、、、、、、、、、、、、、、,共个,所有的基本事件数为,因此,事件“”的概率为.故选:C.【题目点拨】本题考查利用古典概型的概率公式计算事件的概率,解题的关键就是求出总的基本事件数和所求事件所包含的基本事件数,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、;【解题分析】

根据不等式组表示的平面区域,又直线过点,因此可对分类讨论,以求得,当时,是到直线的距离,在其他情况下,表示与可行域内顶点间的距离.分别计算验证.【题目详解】如图,区域表示在第一象限(含轴的正半轴),直线过点,表示直线的上方,当时,满足题意,当时,直线与轴正半轴交于点,当时,,当时,,满足题意,当时,,不满足题意,综上的取值范围是.故答案为.【题目点拨】本题考查二元一次不等式组表示的平面区域,解题关键是在求时要分类讨论.是直接求两点间的距离还是求点到直线的距离,这要区分开来.14、【解题分析】

令,则由题意可得函数在区间上为增函数且,故有,由此解得实数的取值范围.【题目详解】令,则由函数,在区间上为减函数,可得函数在区间上为增函数且,故有,解得,故答案为.【题目点拨】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题;求复合函数的单调区间的步骤:(1)确定定义域;(2)将复合函数分解成两个基本初等函数;(3)分别确定两基本初等函数的单调性;(4)按“同增异减”的原则,确定原函数的单调区间.15、【解题分析】

根据椭圆的定义与几何性质判断为正三角形,且轴,设,可得,从而可得结果.【题目详解】因为关于的对称点在椭圆上,则,,为正三角形,,又,所以轴,设,则,即,故答案为.【题目点拨】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.16、24【解题分析】∵,∴120,168的最大公约数是24.答案:24三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I);(Ⅱ);(Ⅲ).【解题分析】

(I)先求出原函数的导函数,利用为切线斜率可求得切线方程;(Ⅱ)在区间上是单调递增函数转化为在上恒成立,从而求得答案;(Ⅲ)分别就,,,分别讨论即可求得最小值.【题目详解】(Ⅰ)当时,,,,∴,∴曲线在点处的切线方程为;即:.(Ⅱ),在区间上是单调递增函数,∴在上恒成立,∴只需,解得,所以,当时,在区间上是单调递增函数.(Ⅲ)①当时,在上恒成立,∴在区间上是单调递减函数,∴.②当时,,在上恒成立,∴在区间上是单调递减函数,∴.③当时,,令,解得,令,解得,∴在区间上单调递减函数,在区间上单调递增函数,∴.④当时,在上恒成立,∴在区间上是单调递增函数,∴.综上,.【题目点拨】本题主要考查导函数的几何意义,利用单调性求含参问题,求含参函数的最值问题,意在考查学生的化归能力,分类讨论能力,计算能力,难度较大.18、(1)0.8(2)见解析【解题分析】分析:(1)根据轮胎的尺寸服从正态分布,根据正态曲线的对称性,结合题中所给的相应概率,利用公式求得结果;(2)(¡)根据题意可知抽检属于独立重复试,合格包括三件都不需要被退回和有一件需要退回,利用相应的公式求得结果;(¡¡)根据题意,可知X服从二项分布,利用公式求得结果.详解:(1),.,即此轮胎不被退回的概率为(2)(i)这批轮胎初步质检合格的概率为.(ii)由题可得服从二项分布,.点睛:该题考查的是有关概率与统计的问题,在解题的过程中,需要明确正态分布的性质,利用正态曲线的对称性,利用相关的公式,结合题的条件求得结果;二是要明确抽检相当于独立重复试验,再者就是要明确该事件包括两种情况;三就是明确变量服从二项分布,利用公式求得结果.19、(1)y=g(x)=x+ax;(2)【解题分析】⑴∵f(x∴当x>0时,f(x)=lnx∴当x>0时,f'(x)=1∴当x≠0时,函数y=g(x⑵∵由⑴知当x>0时,g(x∴当a>0,x>0时,g(x)≥2a∴函数y=g(x)在0,+∞上的最小值是2a,∴依题意得2⑶由y=23∴直线y=23x+=724-ln320、(1),(2)【解题分析】

(1)将变换公式代入得,即可曲线C的方程,利用极坐标与直角的互化公式,即可求解直线的直角坐标方程;(2)将直线l0的参数方程代入曲线C的方程整理得,利用根与系数的关系和直线的参数方程中参数的几何意义,即可求解的值.【题目详解】(1)将代入得,曲线C的方程为,由,得,把,代入上式得直线l的直角坐标方程为.(2)因为直线l的倾斜角为,所以其垂线l0的倾斜角为,则直线l0的参数方程为(t为参数),即(t为参数)代入曲线C的方程整理得,设A,B两点对应的参数为t1,t2,由题意知,,则,且,所以.【题目点拨】本题主要考查了极坐标与直角坐标的互化,直线参数方程的应用,其中解答中熟记互化公式,合理利用韦达定理和直线的参数方程中参数的几何意义求解是解答的关键,着重考查了推理与运算能力,属于基础题.21、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论