




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西太原师范学院附中高二数学第二学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知单位圆有一条长为的弦,动点在圆内,则使得的概率为()A. B. C. D.2.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则A.n=8,p=0.2 B.n=4,p=0.4 C.n=5,p=0.32 D.n=7,p=0.453.曲线与直线围成的平面图形的面积为()A. B. C. D.4.已知两个不同的平面α,β和两条不同的直线a,b满足a⊄α,b⊄β,则“a∥b”是“α∥β”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.有4件不同颜色的衬衣,3件不同花样的裙子,另有2套不同样式的连衣裙,需选择一套服装参加“五一”节歌舞演出,则不同的选择方式种数为()A.24 B.14 C.10 D.96.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,每天的正点率服从正态分布,且,则()A.0.96 B.0.97 C.0.98 D.0.997.展开式中的系数为()A.30 B.15 C.0 D.-158.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.9.设,若函数,有大于零的极值点,则()A. B. C. D.10.已知,都是实数,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知函数的定义域为,为的导函数,且,若,则函数的取值范围为()A. B. C. D.12.某随机变量服从正态分布,若在内取值的概率为0.6则在内取值的概率为()A.0.2 B.0.4 C.0.6 D.0.3二、填空题:本题共4小题,每小题5分,共20分。13.(文科学生做)函数的值域为______.14.已知函数,则_________.15.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为,乙发球得1分的概率为,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.16.某小组共8人,若生物等级考成绩如下:2人70分、2人67分、3人64分、1人61分,则该小组生物等级考成绩的中位数为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若是定义在上的增函数,且.(Ⅰ)求的值;(Ⅱ)解不等式:;18.(12分)已知函数.(Ⅰ)求函数的最小正周期和单调递减区间;(Ⅱ)已知,且,求的值.19.(12分)传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,如图是根据调查结果绘制的选手等级人数的条形图.(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成列联表,并据此资料你是否有的把握认为选手成绩“优秀”与文化程度有关?注:,其中.(2)若江西参赛选手共80人,用频率估计概率,试估计其中优秀等级的选手人数;(3)如果在优秀等级的选手中取4名,在良好等级的选手中取2名,再从这6人中任选3人组成一个比赛团队,求所选团队中有2名选手的等级为优秀的概率.20.(12分)[选修4-5:不等式选讲]已知函数的最小值为.(1)求的值;(2)若不等式恒成立,求的取值范围.21.(12分)已知函数fx(1)当a=2,求函数fx(2)若函数fx22.(10分)“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段:,,,,,后得到如图所示的频率分布直方图.问:(1)估计在40名读书者中年龄分布在的人数;(2)求40名读书者年龄的平均数和中位数;(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列及数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
建立直角坐标系,则,设点坐标为,则,故,则使得的概率为,故选A.【题目点拨】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.2、A【解题分析】列方程组,解得.3、D【解题分析】
先作出直线与曲线围成的平面图形的简图,联立直线与曲线方程,求出交点横坐标,根据定积分即可求出结果.【题目详解】作出曲线与直线围成的平面图形如下:由解得:或,所以曲线与直线围成的平面图形的面积为.故选D【题目点拨】本题主要考查定积分的应用,求围成图形的面积只需转化为对应的定积分问题求解即可,属于常考题型.4、D【解题分析】
分别判断充分性和必要性得到答案.【题目详解】如图所示:既不充分也不必要条件.故答案选D【题目点拨】本题考查了充分必要条件,举出反例可以简化运算.5、B【解题分析】分析:利用两个计数原理即可得出.详解:由题意可得,不同的选择方式.故选:B.点睛:切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行;分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.6、D【解题分析】
根据正态分布的对称性,求得指定区间的概率.【题目详解】由于,故,故选D.【题目点拨】本小题主要考查正态分布的对称性,考查正态分布指定区间的概率的求法,属于基础题.7、C【解题分析】
根据的展开式的通项公式找出中函数含项的系数和项的系数做差即可.【题目详解】的展开式的通项公式为,故中函数含项的系数是和项的系数是所以展开式中的系数为-=0【题目点拨】本题考查了二项式定理的应用,熟练掌握二项式定理是解本题的关键.8、A【解题分析】
该空间几何体是由具有相同底面和高的三棱柱和三棱锥组合而成,分别求出体积即可.【题目详解】该空间几何体是由具有相同底面和高的三棱柱和三棱锥组合而成,底面三角形的面积为,三棱柱和三棱锥的高为1,则三棱柱的体积,三棱锥的体积为,故该几何体的体积为.故选A.【题目点拨】本题考查了空间组合体的三视图,考查了学生的空间想象能力,属于基础题.9、B【解题分析】试题分析:设,则,若函数在x∈R上有大于零的极值点.即有正根,当有成立时,显然有,此时.由,得参数a的范围为.故选B.考点:利用导数研究函数的极值.10、D【解题分析】;,与没有包含关系,故为“既不充分也不必要条件”.11、B【解题分析】分析:根据题意求得函数的解析式,进而得到的解析式,然后根据函数的特征求得最值.详解:由,得,∴,设(为常数),∵,∴,∴,∴,∴,∴当x=0时,;当时,,故当时,,当时等号成立,此时;当时,,当时等号成立,此时.综上可得,即函数的取值范围为.故选B.点睛:解答本题时注意从所给出的条件出发,并结合导数的运算法则利用构造法求出函数的解析式;求最值时要结合函数解析式的特征,选择基本不等式求解,求解时注意应用不等式的条件,确保等号能成立.12、D【解题分析】分析:由正态分布曲线图,内取值的概率为0.6,区间关于对称,得解。详解:由正态分布曲线图,内取值的概率为,区间关于对称,故上的概率为.故选D点睛:正态分布,在区间段的概率,利用图像的对称性可得出左右两侧的区间的概率。二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】分析:先分离常数,然后根据二次函数最值求解即可.详解:由题可得:故答案为.点睛:考查函数的值域,对原式得正确分离常数是解题关键,属于中档题.14、1【解题分析】
利用分段函数的性质求解.【题目详解】解:∵,∴,,故答案为:1【题目点拨】本题考查函数值的求法,解题时要认真审题,注意分段函数的性质的灵活运用.15、【解题分析】
先确定比分为1比2时甲乙在三次发球比赛中得分情况,再分别求对应概率,最后根据互斥事件概率公式求结果【题目详解】比分为1比2时有三种情况:(1)甲第一次发球得分,甲第二次发球失分,乙第一次发球得分(2)甲第一次发球失分,甲第二次发球得分,乙第一次发球得分(3)甲第一次发球失分,甲第二次发球失分,乙第一次发球失分所以概率为【题目点拨】本题考查根据互斥事件概率公式求概率,考查基本分析求解能力,属中档题.16、65.5【解题分析】
把8人的生物等级考成绩从小到大排列,最后按照中位数的定义可以计算出该小组生物等级考成绩的中位数.【题目详解】8人的生物等级考成绩从小到大排列如下:,所以该小组生物等级考成绩的中位数为.故答案为:【题目点拨】本题考查了中位数的计算方法,考查了数学运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解题分析】
(Ⅰ)抽象函数求值,采用令值的方法;(Ⅱ)根据(Ⅰ)求出对应的函数值,再根据函数单调性求不等式的解集.【题目详解】解:(1)在等式中令,则(2)∵∴又是定义在上的增函数∴∴【题目点拨】(1)抽象函数中,如果要求解某个函数值,一般采取令值的方式去处理问题;(2)函数值之间的不等关系,利用函数单调性,可将其转变为自变量之间的关系,从而完成求解.18、(Ⅰ),;(Ⅱ).【解题分析】分析:(1)根据两角和差公式将表达式化一,进而得到周期和单调区间;(2),通过配凑角得到,展开求值即可.详解:(Ⅰ),,令,,函数的单调递减区间为.(Ⅱ),,,,则,.点睛:这个题目考查了三角函数的化一求值,两角和差公式的化简,配凑角的应用;三角函数的求值化简,常用的还有三姐妹的应用,一般,,这三者我们成为三姐妹,结合,可以知一求三.19、(1)没有的把握认为优秀与文化程度有关(2)60人(3)【解题分析】分析:(1)由条形图可知列联表,求出,从而即可判断;(2)由条形图可知,所抽取的100人中,优秀等级有75人,故优秀率为,由此能求出参赛选手中优秀等级的选手人数;(3)记优秀等级中4人分别为,,,,良好等级中的两人为,,通过利用列举法即可求得所选团队中有2名选手的等级为优秀的概率.详解:(1)由条形图可知列联表如表:优秀合格合计大学组451055中学组301545合计7525100,∴没有的把握认为优秀与文化程度有关.(2)由条形图可知,所抽取的100人中,优秀等级有75人,故优秀率为,所以所有参赛选手中优秀等级人数约为人.(3)记优秀等级中4人分别为,,,,良好等级中的两人为,,则任取3人的取法有,,,,,,,,,,,,,,,,,,,共20种,其中有2名选手的等级为优秀的有,,,,,,,,,,共12种,故所选团队中的有2名选手的等级为优秀的概率为.点睛:本题考查独立检验的应用,考查分层抽样的应用,考查概率的求法,考查数据处理能力、运算求解能力,考查数形结合思想、函数与方程思想,是中档题.20、(1)(2)【解题分析】分析:(1)分类讨论的取值情况,去绝对值;根据最小值确定的值.(2)代入的值,由绝对值不等式确定表达式;去绝对值解不等式即可得到最后取值范围.详解:(1),所以最小值为,即.(2)由(1)知,恒成立,由于,等号当且仅当时成立,故,解得或.所以的取值范围为.点睛:本题综合考查了分类讨论解绝对值不等式,根据绝对值不等式成立条件确定参数的范围,属于中档题.21、(1)见解析;(2)0,2【解题分析】
(1)代入a的值,求出函数的单调区间,从而求出函数的极值即可;(2)求出函数的导数,通过讨论a的范围,求出函数的单调区间,结合函数的零点个数确定a的范围即可.【题目详解】(1)当a=2时,f'x=2x-列表:x011f—0+f↘极小值f↗所以,当x=1时,fx有极小值f1=(2)①因为fx=x2-a当a≤0时,f'所以fx在0,+∞当a>0时,由f'x>0得x>a2,由所以fx在0,a2上单调递减,所以fx在x1°当a=2时,fx在0,1上单调递减,fx2°当0<a<2时,a2<1,故fa注意到fx=x取x0=e-1设gx=xlnx,g列表x011g—0+g↘极小值g↗所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物理学中的数据模型构建试题及答案
- 有效管理时间计划2025年商务英语试题及答案
- 家具产品的市场定位研究试题及答案
- 自考保险法试题及答案
- 小学教师教育教学反思关键点试题及答案
- 小学教师如何通过反思提升自信试题及答案
- 职高单招语文试题及答案
- 能源互联网背景下2025年分布式能源交易商业模式创新与市场拓展研究报告
- 工厂虫害考试题及答案
- 宁夏回族自治区银川市兴庆区银川一中2024-2025学年高三下学期期末英语试题理试题分类汇编含解析
- 医学统计学练习题与答案
- 欧洲质量奖课件
- 西班牙文化概况
- 桩侧摩阻力ppt(图文丰富共28)
- 预拌混凝土出厂合格证2
- 小学校本课程教材《鼓号队》
- 云南省饮用水生产企业名录534家
- 9E燃机系统培训演3.25
- 苏霍姆林斯基教育思想-PPT课件
- 脊髓损伤康复评定治疗PPT课件
- 啤酒贴标机毕业设计论文
评论
0/150
提交评论