版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西大学附属中学数学高二第二学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某大学推荐7名男生和5名女生参加某企业的暑期兼职,该企业欲在这12人中随机挑选3人从事产品的销售工作,记抽到的男生人数为,则()A.2 B. C. D.2.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.243.设,则“”是“”成立的()A.充要不必要条件 B.必要不充分条件C.充要条件 D.既不充要也不必要条件4.一根细金属丝下端挂着一个半径为1cm的金属球,将它浸没底面半径为2cm的圆柱形容器内的水中,现将金属丝向上提升,当金属球被拉出水面时,容器内的水面下降了()A.cm B.cm C.cm D.cm5.已知函数,其中,为自然对数的底数,若,是的导函数,函数在区间内有两个零点,则的取值范围是()A. B. C. D.6.已知双曲线与双曲线,给出下列说法,其中错误的是()A.它们的焦距相等 B.它们的焦点在同一个圆上C.它们的渐近线方程相同 D.它们的离心率相等7.已知函数,下面结论错误的是()A.函数的最小正周期为 B.函数在区间上是增函数C.函数的图像关于直线对称 D.函数是奇函数8.下列等式不正确的是()A. B.C. D.9.若,则实数的值为()A.1 B.-2 C.2 D.-2或110.在区间上随机取一个数,使直线与圆相交的概率为()A. B. C. D.11.不等式的解集是()A.或 B.C.或 D.12.已知复数是纯虚数,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数是定义在上的偶函数,且满足,当时,,则方程的实根个数为____________.14.某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有种(用数字作答).15.已知函数fx=axlnx,x∈0,+∞,其中a为实数,f'x为fx的导函数,16.已知复数z=2+6i,若复数mz+m2(1+i)为非零实数,求实数m的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某海湿地如图所示,A、B和C、D分别是以点O为中心在东西方向和南北方向设置的四个观测点,它们到点O的距离均为公里,实线PQST是一条观光长廊,其中,PQ段上的任意一点到观测点C的距离比到观测点D的距离都多8公里,QS段上的任意一点到中心点O的距离都相等,ST段上的任意一点到观测点A的距离比到观测点B的距离都多8公里,以O为原点,AB所在直线为x轴建立平面直角坐标系xOy.(1)求观光长廊PQST所在的曲线的方程;(2)在观光长廊的PQ段上,需建一服务站M,使其到观测点A的距离最近,问如何设置服务站M的位置?18.(12分)目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响某校随机抽取200名学生,对学习成绩和学案使用程度进行了调查,统计数据如下表所示:善于使用学案不善于使用学案合计学习成绩优秀40学习成绩一般30合计200已知随机抽查这200名学生中的一名学生,抽到善于使用学案的学生概率是0.6.参考公式:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(I)完成列联表(不用写计算过程);(Ⅱ)试运用独立性检验的思想方法分析有多大的把握认为学生的学习成绩与对待学案的使用态度有关?19.(12分)如图,在四棱锥P—ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求点D到平面PBC的距离;(2)设Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求二面角B-CQ-D的余弦值.20.(12分)夏天喝冷饮料已成为年轻人的时尚.某饮品店购进某种品牌冷饮料若干瓶,再保鲜.(Ⅰ)饮品成本由进价成本和可变成本(运输、保鲜等其它费用)组成.根据统计,“可变成本”(元)与饮品数量(瓶)有关系.与之间对应数据如下表:饮品数量(瓶)24568可变成本(元)34445依据表中的数据,用最小二乘法求出关于的线性回归方程;如果该店购入20瓶该品牌冷饮料,估计“可变成本”约为多少元?(Ⅱ)该饮品店以每瓶10元的价格购入该品牌冷饮料若干瓶,再以每瓶15元的价格卖给顾客。如果当天前8小时卖不完,则通过促销以每瓶5元的价格卖给顾客(根据经验,当天能够把剩余冷饮料都低价处理完毕,且处理完毕后,当天不再购进).该店统计了去年同期100天该饮料在每天的前8小时内的销售量(单位:瓶),制成如下表:每日前8个小时销售量(单位:瓶)15161718192021频数10151616151315若以100天记录的频率作为每日前8小时销售量发生的概率,若当天购进18瓶,求当天利润的期望值.(注:利润=销售额购入成本“可变本成”)参考公式:回归直线方程为,其中参考数据:,.21.(12分)已知函数.(1)讨论的单调性;(2)若恒成立,求的取值范围.22.(10分)在平面直角坐标系中,直线的参数方程为为参数),以原点为极点,以轴非负半轴为极轴建立极坐标系,两坐标系取相同的长度单位.曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)已知点是曲线上任一点,求点到直线距离的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
依题意可得,X的可能取值为0,1,2,3,分别求出概率,再由期望公式即可求出.【题目详解】依题意可得,X的可能取值为0,1,2,3,则,,,,所以.【题目点拨】本题主要考查离散型随机变量期望的求法.2、D【解题分析】试题分析:先排三个空位,形成4个间隔,然后插入3个同学,故有种考点:排列、组合及简单计数问题3、C【解题分析】试题分析:当时,,当一正一负时,,当时,,所以,故选C.考点:充分必要条件.4、D【解题分析】
利用等体积法求水面下降高度。【题目详解】球的体积等于水下降的体积即,.答案:D.【题目点拨】利用等体积法求水面下降高度。5、A【解题分析】
利用f(1)=0得出a,b的关系,根据f′(x)=0有两解可知y=2e2x与y=2ax+a+1﹣e2的函数图象在(0,1)上有两个交点,做出两函数图象,根据图象判断a的范围.【题目详解】解:∵f(1)=0,∴e2﹣a+b﹣1=0,∴b=﹣e2+a+1,∴f(x)=e2x﹣ax2+(﹣e2+a+1)x﹣1,∴f′(x)=2e2x﹣2ax﹣e2+a+1,令f′(x)=0得2e2x=2ax﹣a﹣1+e2,∵函数f′(x)在区间(0,1)内有两个零点,∴y=2e2x与y=2ax﹣a﹣1+e2的函数图象在(0,1)上有两个交点,作出y=2e2x与y=2ax﹣a﹣1+e2=a(2x﹣1)+e2﹣1函数图象,如图所示:若直线y=2ax﹣a﹣1+e2经过点(1,2e2),则a=e2+1,若直线y=2ax﹣a﹣1+e2经过点(0,2),则a=e2﹣3,∴e2﹣3<a<e2+1.故选:A.点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.6、D【解题分析】
根据题意,由两个双曲线的方程计算出两个双曲线的焦点坐标,焦距,渐近线方程以及离心率,进而分析选项即可得到答案。【题目详解】根据题意,双曲线,其中,,则,则焦距,焦点坐标,渐近线方程为,离心率;双曲线,其标准方程为,其中,,则,则焦距,焦点坐标,渐近线为,离心率;据此依次分析选项:两个双曲线的焦距均为,故A正确;双曲线的焦点坐标,双曲线的焦点坐标,都在圆上,故B正确;渐近线方程均为,故C正确;双曲线的离心率,双曲线的离心率,离心率不相等,故选D【题目点拨】本题考查双曲线的基本性质,解题时要注意将双曲线的方程变为标准形式,属于基础题。7、D【解题分析】试题分析:,所以函数的最小正周期为,函数在区间上是增函数,函数的图像关于直线对称,函数是偶函数.考点:1.三角函数的周期性;2.三角函数的奇偶性;3.图像得对称轴;4.函数的单调性.8、A【解题分析】
根据排列组合数公式依次对选项,整理变形,分析可得答案.【题目详解】A,根据组合数公式,,A不正确;B,,故B正确;C,故C正确;D,故D正确;故选:.【题目点拨】本题考查排列组合数公式的计算,要牢记公式,并进行区别,属于基础题.9、A【解题分析】分析:据积分的定义计算即可.详解:解得或(舍).故选A点睛:本题考查的知识点是定积分,根据已知确定原函数是解答的关键.10、C【解题分析】
先求出直线和圆相交时的取值范围,然后根据线型的几何概型概率公式求解即可.【题目详解】由题意得,圆的圆心为,半径为,直线方程即为,所以圆心到直线的距离,又直线与圆相交,所以,解得.所以在区间上随机取一个数,使直线与圆相交的概率为.故选C.【题目点拨】本题以直线和圆的位置关系为载体考查几何概型,解题的关键是由直线和圆相交求出参数的取值范围,然后根据公式求解,考查转化和计算能力,属于基础题.11、D【解题分析】
先求解出不等式,然后用集合表示即可。【题目详解】解:,即,即,故不等式的解集是,故选D。【题目点拨】本题是集合问题,解题的关键是正确求解绝对值不等式和规范答题。12、B【解题分析】
根据纯虚数定义,可求得的值;代入后可得复数,再根据复数的除法运算即可求得的值.【题目详解】复数是纯虚数,则,解得,所以,则,故选:B.【题目点拨】本题考查了复数的概念,复数的除法运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、4【解题分析】分析:函数是偶函数,还是周期函数,画出函数图像,转化为的图像交点问题来求解详解:,则,周期为当时,由图可得,则方程的实根个数为点睛:本题主要考查的是抽象函数的应用,关键在于根据题意,分析出函数的解析式,作出函数图象,考查了学生的作图能力和数形结合的思想应用,属于中档题。14、216【解题分析】
每种颜色的灯泡都至少用一个,即用了四种颜色的灯进行安装,分
3
步进行,第一步
,A
、B.
C
三点选三种颜色灯泡共有
种选法;第二步
,
在
A1
、
B1
、
C1
中选一个装第
4
种颜色的灯泡,有
3
种情况;第三步
,
为剩下的两个灯选颜色
,
假设剩下的为
B1
、
C1,
若
B1
与
A
同色
,
则
C1
只能选
B
点颜色;若
B1
与
C
同色
,
则
C1
有A.
B
处两种颜色可选,故为
B1
、
C1
选灯泡共有
3
种选法,得到剩下的两个灯有
3
种情况,则共有
×3×3=216
种方法.故答案为
21615、3【解题分析】试题分析:f'(x)=alnx+a,所以考点:导数的运算.【名师点睛】(1)在解答过程中常见的错误有:①商的求导中,符号判定错误.②不能正确运用求导公式和求导法则.(2)求函数的导数应注意:①求导之前利用代数或三角变换先进行化简,减少运算量.②根式形式,先化为分数指数幂,再求导.③复合函数求导先确定复合关系,由外向内逐层求导,必要时可换元处理.16、-6【解题分析】
利用复数代数形式的乘除运算化简,再由虚部为0且实部不为0列式求解.【题目详解】由题意,,解得.故答案为-6.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)由题意知,QS的轨迹为圆的一部分,PQ的轨迹为双曲线的一部分,ST的轨迹为双曲线的一部分,分别求出对应的轨迹方程即可;(2)由题意设点M(x,y),计算|MA|2的解析式,再求|MA|的最小值与对应的x、y的值.【题目详解】解:(1)①由题意知,QS段上的任意一点到中心点O的距离都相等,QS的轨迹为圆的一部分,其中r=4,圆心坐标为O,即x≥0、y≥0时,圆的方程为x2+y2=16;②PQ段上的任意一点到观测点C的距离比到观测点D的距离都多8公里,PQ的轨迹为双曲线的一部分,且c=4,a=4,即x<0、y>0时,双曲线方程为1;③ST段上的任意一点到观测点A的距离比到观测点B的距离都多8公里,ST的轨迹为双曲线的一部分,且c=4,a=4,即x>0、y<0时,双曲线方程为1;综上,x≥0、y≥0时,曲线方程为x2+y2=16;x<0、y>0时,曲线方程为1;x>0、y<0时,曲线方程为1;[注]可合并为1;(2)由题意设点M(x,y),其中1,其中x≤0,y≥0;则|MA|2y2x2+16=232;当且仅当x=﹣2时,|MA|取得最小值为4;此时y=42;∴点M(﹣2,2).【题目点拨】本题考查了圆、双曲线的定义与标准方程的应用问题,解题的关键是利用定义求出双曲线和圆的标准方程.18、(1)见详解(2)有99.9%的把握认为学生的学习成绩与对待学案的使用态度有关.【解题分析】
(1)由已知数据列列联表,
(2)由公式得:,结合参考数据下结论即可.【题目详解】(1)列联表:善于使用学案不善于使用学案合计学习成绩优秀405090学习成绩一般8030110合计12080200(2)由公式得:,故有99.9%的把握认为学生的学习成绩与对待学案的使用态度有关.【题目点拨】本题主要考查了列联表及的运算及用独立性检验的思想方法分析,属于中档题.19、(1).(2).【解题分析】分析:(1)利用等体积法即可;(2)建立空间直角坐标系,利用换元法可得,再结合函数在上的单调性,计算即得结论.详解:(1)S△BCD=BC×AB=,由于PA⊥平面ABCD,从而PA即为三棱锥P-BCD的高,故VP-BCD=S△BCD×PA=.设点D到平面PBC的距离为h.由PA⊥平面ABCD得PA⊥BC,又由于BC⊥AB,故BC⊥平面PAB,所以BC⊥PB.由于BP==,所以S△PBC=BC×PB=.故VD-BCP=S△BCP×h=h因为VP-BCD=VD-BCP,所以h=.(2)以{,,}为正交基底建立如图所示的空间直角坐标系A-xyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).设=λ,(0≤λ≤1)因为=(-1,0,2),所以=(-λ,0,2λ),由=(0,-1,0),得=+=(-λ,-1,2λ),又=(0,-2,2),从而cos〈,〉==.设1+2λ=t,t∈[1,3],则cos2〈,〉==≤.当且仅当t=,即λ=时,|cos〈,〉|的最大值为.因为y=cosx在上是减函数,此时直线CQ与DP所成角取得最小值.又因为BP==,所以BQ=BP=.=(0,-1,0),=(1,1,-2)设平面PCB的一个法向量为m=(x,y,z),则m·=0,m·=0,即得:y=0,令z=1,则x=2.所以m=(2,0,1)是平面PCB的一个法向量.又=+=(-λ,-1,2λ)=(-,-1,),=(-1,1,0)设平面DCQ的一个法向量为n=(x,y,z),则n·=0,n·=0,即取x=4,则y=4,z=7,所以n=(4,4,7)是平面DCQ的一个法向量.从而cos〈m,n〉==,又由于二面角B-CQ-D为钝角,所以二面角B-CQ-D的余弦值为-.点睛:本题考查求二面角的三角函数值,考查利用空间向量解决问题的能力,注意解题方法的积累.20、(Ⅰ),可变成本”约为元;(Ⅱ)利润的期望值为元【解题分析】
(Ⅰ)将关于之间对应的数据代入最小二乘法公式求出与,可得出回归直线方程,再将代入回归直线方程可得出“
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备故障诊断与排除好用手册
- 面向高级遗体防腐师的职业发展路径规划
- 幼儿园水瓶清洗通知书
- 广东危化品复工通知书
- 广东金融学院官网通知书
- 广州海伦堡停电通知书
- 广平高速中标通知书
- 广西动车涨价通知书
- 库车员工聚餐通知书
- 延迟交房烂尾通知书
- 冠脉搭桥术后患者的护理
- DZ/T 0259-2014陆地石油和天然气调查规范
- 单位定点洗车装潢协议书
- 2024年山东省港口集团有限公司招聘真题
- 化工安全警示教育课件
- 钢管加工合同协议
- 肠外营养并发症及护理
- 2025年海飞丝产品的市场定位和消费者行为分析报告
- 小学科学3-6年级实验目一览表(苏教版)
- GB/T 23595.2-2025LED用稀土荧光粉试验方法第2部分:相对亮度的测定
- ICU轮转护士带教计划
评论
0/150
提交评论