2024届湖北省重点高中协作体高二数学第二学期期末监测模拟试题含解析_第1页
2024届湖北省重点高中协作体高二数学第二学期期末监测模拟试题含解析_第2页
2024届湖北省重点高中协作体高二数学第二学期期末监测模拟试题含解析_第3页
2024届湖北省重点高中协作体高二数学第二学期期末监测模拟试题含解析_第4页
2024届湖北省重点高中协作体高二数学第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省重点高中协作体高二数学第二学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点的直线与函数的图象交于,两点,为坐标原点,则()A. B. C.10 D.202.六安一中高三教学楼共五层,甲、乙、丙、丁四人走进该教学楼2~5层的某一层楼上课,则满足且仅有一人上5楼上课,且甲不在2楼上课的所有可能的情况有()种A.27 B.81 C.54 D.1083.双曲线的焦点坐标是A. B. C. D.4.若函数,对任意实数都有,则实数的值为()A.和 B.和 C. D.5.掷两颗均匀的骰子,则点数之和为5的概率等于()A. B. C. D.6.已知两条不同直线a、b,两个不同平面、,有如下命题:①若,,则;②若,,则;③若,,则;④若,,,则以上命题正确的个数为()A.3 B.2 C.1 D.07.下列选项中,说法正确的是()A.命题“”的否定是“”B.命题“为真”是命题“为真”的充分不必要条件C.命题“若,则”是假命题D.命题“在中,若,则”的逆否命题为真命题8.已知复数满足(为虚数单位),则()A. B. C. D.9.已知函数的图象关于直线对称,当时,,若,,,则的大小关系是A. B. C. D.10.在一次试验中,测得的四组值分别是A(1,2),B(3,4),C(5,6)D(7,8),则y与x之间的回归直线方程为()A. B. C. D.11.用数学归纳法证明(,)时,第一步应验证()A. B. C. D.12.某校教学大楼共有5层,每层均有2个楼梯,则由一楼至五楼的不同走法共有()A.24种B.52种C.10种D.7种二、填空题:本题共4小题,每小题5分,共20分。13.若函数是偶函数,则实数的值为______.14.乒乓球比赛,三局二胜制.任一局甲胜的概率是,甲赢得比赛的概率是,则的最大值为_____.15.己知复数和均是纯虚数,则的模为________.16.若在展开式中,若奇数项的二项式系数之和为,则含的系数是_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,曲线(是参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程:.(1)写出曲线的普通方程与直线的直角坐标方程;(2)设,直线与曲线交于、两点,求的值.18.(12分)已知函数.(1)求函数的单调区间;(2)若,求证:.(为自然对数的底数)19.(12分)(理科学生做)某一智力游戏玩一次所得的积分是一个随机变量,其概率分布如下表,数学期望.(1)求a和b的值;(2)某同学连续玩三次该智力游戏,记积分X大于0的次数为Y,求Y的概率分布与数学期望.X036Pab20.(12分)已知(其中且,是自然对数的底).(1)当,时,求函数在处的切线方程;(2)当时,求函数在上的最小值;(3)若且关于的不等式在上恒成立,求证:.21.(12分)已知.(1)当时,求的展开式中含项的系数;(2)证明:的展开式中含项的系数为.22.(10分)新高考3+3最大的特点就是取消文理科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这6科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全理(选择物理、化学、生物)的选择是否与性别有关,觉得从某学校高一年级的650名学生中随机抽取男生,女生各25人进行模拟选科.经统计,选择全理的人数比不选全理的人数多10人.(1)请完成下面的2×2列联表;选择全理不选择全理合计男生5女生合计(2)估计有多大把握认为选择全理与性别有关,并说明理由;(3)现从这50名学生中已经选取了男生3名,女生2名进行座谈,从中抽取2名代表作问卷调查,求至少抽到一名女生的概率.0.150.100.050.0250.0100.0050.0012.0722.0763.8415.0246.6357.87910.828附:,其中.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

判断函数的图象关于点P对称,得出过点的直线与函数的图象交于A,B两点时,得出A,B两点关于点P对称,则有,再计算的值.【题目详解】,∴函数的图象关于点对称,∴过点的直线与函数的图象交于A,B两点,且A,B两点关于点对称,∴,则.故选D.【题目点拨】本题主要考查了函数的对称性,以及平面向量的数量积运算问题,是中档题.2、B【解题分析】

以特殊元素甲为主体,根据分类计数原理,计算出所有可能的情况,求得结果.【题目详解】甲在五楼有33甲不在五楼且不在二楼有C3由分类加法计数原理知共有54+27=81种不同的情况,故选B.【题目点拨】该题主要考查排列组合的有关知识,需要理解排列组合的概念,根据题目要求分情况计数,属于简单题目.3、C【解题分析】分析:由题意求出,则,可得焦点坐标详解:由双曲线,可得,故双曲线的焦点坐标是选C.点睛:本题考查双曲线的焦点坐标的求法,属基础题.4、A【解题分析】由得函数一条对称轴为,因此,由得,选A.点睛:求函数解析式方法:(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.(4)由求对称轴5、B【解题分析】

试题分析:掷两颗均匀的骰子,共有36种基本事件,点数之和为5的事件有(1,4),(2,3),(3,2),(4,1)这四种,因此所求概率为,选B.考点:概率问题6、C【解题分析】

直接利用空间中线线、线面、面面间的位置关系逐一判定即可得答案.【题目详解】①若a∥α,b⊂α,则a与b平行或异面,故①错误;②若a∥α,b∥α,则a∥b,则a与b平行,相交或异面,故②错误;③若,a⊂α,则a与β没有公共点,即a∥β,故③正确;④若α∥β,a⊂α,b⊂β,则a与b无公共点,∴平行或异面,故④错误.∴正确的个数为1.故选C.【题目点拨】本题考查命题真假的判断,考查直线与平面之间的位置关系,涉及到线面、面面平行的判定与性质定理,是基础题.7、C【解题分析】对于A,命题“”的否定是“”,故错误;对于B,命题“为真”是命题“为真”的必要不充分条件,故错误;对于C,命题“若,则”在时,不一定成立,故是假命题,故正确;对于D,“在中,若,则或”为假命题,故其逆否命题也为假命题,故错误;故选C.8、C【解题分析】

整理得到,根据模长的运算可求得结果.【题目详解】由得:本题正确选项:【题目点拨】本题考查向量模长的求解,属于基础题.9、D【解题分析】函数的图象关于直线对称,所以为偶函数,当时,,函数单增,;,,因为,且函数单增,故,即,故选D.10、A【解题分析】分析:根据所给的这组数据,取出这组数据的样本中心点,把样本中心点代入所给的四个选项中验证,若能够成立的只有一个,这一个就是线性回归方程.详解:∵,∴这组数据的样本中心点是(4,5)把样本中心点代入四个选项中,只有y=x+1成立,故选A.点睛:本题考查求线性回归方程,一般情况下是一个运算量比较大的问题,解题时注意平均数的运算不要出错,注意系数的求法,运算时要细心,但是对于一个选择题,还有它特殊的加法.11、B【解题分析】

直接利用数学归纳法写出时左边的表达式即可.【题目详解】解:用数学归纳法证明,时,第一步应验证时是否成立,即不等式为:;故选:.【题目点拨】在数学归纳法中,第一步是论证时结论是否成立,此时一定要分析不等式左边的项,不能多写也不能少写,否则会引起答案的错误.12、A【解题分析】因为每层均有2个楼梯,所以每层有两种不同的走法,由分步计数原理可知:从一楼至五楼共有24种不同走法.故选A.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据偶函数的定义,先得到,化简整理,得到,即可求出结果.【题目详解】因为函数是偶函数,所以,即,即,整理得,所以.故答案为:.【题目点拨】本题主要考查由函数奇偶性求参数的问题,熟记偶函数的概念即可,属于基础题型.14、【解题分析】分析:采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率;进而求得的最大值.详解:采用三局两胜制,

则甲在下列两种情况下获胜:(甲净胜二局),(前二局甲一胜一负,第三局甲胜).因为与互斥,所以甲胜概率为则设即答案为.,注意到,则函数在和单调递减,在上单调递增,故函数在处取得极大值,也是最大值,最大值为即答案为.点睛:本题考查概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用.15、1【解题分析】

通过纯虚数的概念,即可求得,从而得到模长.【题目详解】根据题意设,则,又为虚数,则,故,则,故答案为1.【题目点拨】本题主要考查纯虚数及模的概念,难度不大.16、【解题分析】

由题意可知,奇数项的二项式系数之和为,求出,然后求出展开式的通项,利用的指数为,求出参数的值,然后将参数的值代入通项,即可求出含项的系数.【题目详解】由题意可知,奇数项的二项式系数之和为,解得,展开式的通项为,令,得,因此,展开式中含的系数为.故答案为.【题目点拨】本题考查二项展开式中奇数项系数和的问题,同时也考查了二项展开式中指定项系数的求解,一般利用展开式通项来进行计算,考查运算求解能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)曲线的普通方程是,直线的直角坐标方程为(2)【解题分析】

(1)直接利用参数方程公式得到曲线方程,三角函数展开代入公式得到答案.(2)写出直线的参数方程,代入曲线方程,利用韦达定理得到答案.【题目详解】解:(1)曲线的普通方程是,直线的直角坐标方程为.(2)直线经过点,且倾斜角是∴直线的参数方程是(是参数)设,对应的参数分别为,将直线的参数方程代入,整理得,∴∴由参数的几何意义可知:.【题目点拨】本题考查了参数方程,极坐标方程,利用直线参数方程和韦达定理简化了运算.18、(1)当时,只有增区间为,当时,的增区间为,减区间为;(2)证明见解析.【解题分析】分析:⑴求出函数的导数,通过讨论的范围,求出函数的单调区间⑵问题等价于,令,根据函数的单调性即可判断出结果详解:(1),当时,,函数在单调递增,当时,时,时,在单调递增,在单调递减.综上所述,当时,只有增区间为.当时,的增区间为,减区间为.(2)等价于.令,而在单调递增,且,.令,即,,则时,时,故在单调递减,在单调递增,所以.即.点睛:本题考查了导数的运用,利用导数求出含有参量的函数单调区间,在证明不等式成立时需要进行转化,得到新函数,然后再求导,这里需要注意当极值点求不出时,可以选择代入计算化简。19、(1).(2)分布列见解析,.【解题分析】分析:(1)根据分布列的性可知所有的概率之和为1然后再根据期望的公式得到第二个方程联立求解即可;(2)根据二项分布求解即可.详解:(1)因为,所以,即.①又,得.②联立①,②解得,.(2),依题意知,故,,,.故的概率分布为的数学期望为.点睛:考查分布列的性质,二项分布,认真审题,仔细计算是解题关键,属于基础题.20、(1);(2)当或时,最小值为,当时,最小值为;(3)见解析.【解题分析】

(1)利用导数的几何意义,求出切线的斜率,再写出切点坐标,就可以写出切线方程.(2)当时,,求导得单调性时需要分类讨论,,,再求最值.(3)将恒成立问题转化为在上恒成立,设,,求出,再令设,,求最大值小于,进而得出结论.【题目详解】解:(1),时,,,,,函数在处的切线方程为,即.(2)当时,,,令,解得或,当时,即时,在上恒成立,在上单调递减,;当时,即时,在上恒成立,在上单调递减,;③当时,即时,当时,,当时,,在上单调递减,在上单调递增,.综上所述:当或时,最小值为;当时,最小值为.(3)证明:由题意知,当时,在上恒成立,在上恒成立,设,,,在上恒成立,在上单调递减,,,存在使得,即,因为,所以.当时,,当时,,在上单调递增,在上单调递减,,,设,,,在恒成立,在上单调递增,,在单调递增,,.【题目点拨】本题考查导数的综合应用,考查了最值问题,考查了不等式恒成立问题.若要证明,一般地,只需说明即可;若要证明恒成立,一般只需说明即可,即将不等式问题转化为最值问题.21、(1)84;(2)证明见解析【解题分析】

(1)当时,根据二项展开式分别求出每个二项式中的项的系数相加即可;(2)根据二项展开式,含项的系数为,又,再结合即可得到结论.【题目详解】(1)当时,,的展开式中含

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论