 
         
         
         
         
        版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东大埔华侨二中数学高二下期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某所大学在10月份举行秋季越野接力赛,每个专业四人一组,其中计算机专业的甲、乙、丙、丁四位大学生将代表本专业参加拉力赛,需要安排第一棒到第四棒的顺序,四个人去询问教练的安排,教练对甲说:“根据训练成绩,你和乙都不适合跑最后一棒”;然后又对乙说:“你还不适合安排在第一棒”,仅从教练回答的信息分析,要对这四名同学讲行合理的比赛棒次安排,那么不同情形的种数共有()A.6 B.8 C.12 D.242.设函数f(x),g(x)在[A,B]上均可导,且f′(x)<g′(x),则当A<x<B时,有()A.f(x)>g(x)B.f(x)+g(A)<g(x)+f(A)C.f(x)<g(x)D.f(x)+g(B)<g(x)+f(B)3.已知函数,若函数的图象与轴的交点个数不少于2个,则实数的取值范围是()A. B.C. D.4.一个算法的程序框图如图所示,如果输出的值是1,那么输入的值是()A.-1 B.2 C.-1或2 D.1或-25.在一次试验中,测得的四组值分别是,,,,则与之间的线性回归方程为()A. B. C. D.6.从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有()(A)种(B)种(C)种(D)种7.利用反证法证明:若,则,应假设()A.,不都为 B.,都不为C.,不都为,且 D.,至少一个为8.已知集合,,则A. B. C. D.9.已知函数,则,,的大小关系是()A. B.C. D.10.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.1811.在等差数列中,是函数的两个零点,则的前10项和等于()A. B.15 C.30 D.12.x>2是x2A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,的最大值为,则实数的值为_______.14.设为抛物线的焦点,为抛物线上两点,若,则____________.15.设圆x2+y2=1上的动点P到直线3x+4y﹣10=0的距离为d,则d的最大值为_____.16.在体积为9的斜三棱柱ABC—A1B1C1中,S是C1C上的一点,S—ABC的体积为2,则三棱锥S—A1B1C1的体积为___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数有两个极值点和3.(1)求,的值;(2)若函数的图象在点的切线为,切线与轴和轴分别交于,两点,点为坐标原点,求的面积.18.(12分)已知函数.(1)当时,求的单调区间;(2)若对于在定义域内的任意,都有,求的取值范围.19.(12分)从5名男生和4名女生中选出4人去参加座谈会,问:(1)如果4人中男生和女生各选2人,有多少种选法?(2)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?(3)如果4人中必须既有男生又有女生,有多少种选法?20.(12分)设函数.(1)求在处的切线方程;(2)当时,,求的取值范围.21.(12分)如图,四核锥中,,是以为底的等腰直角三角形,,为中点,且.(Ⅰ)求证:平面平面;(Ⅱ)求直线与平面所成角的正弦值.22.(10分)将个不同的红球和个不同的白球,放入同一个袋中,现从中取出个球.(1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法;(2)取出一个红球记分,取出一个白球记分,若取出个球的总分不少于分,则有多少种不同的取法;(3)若将取出的个球放入一箱子中,记“从箱子中任意取出个球,然后放回箱子中”为一次操作,如果操作三次,求恰有一次取到个红球并且恰有一次取到个白球的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
这里将“乙”看做特殊元素,考虑“乙”的位置,再考虑甲的位置,运用分类加法去计算.【题目详解】根据条件乙只能安排在第二棒或第三棒;若“乙”安排在第二棒,此时有:种,若“乙”安排在第三棒,此时有:种,则一共有:种.故选:B.【题目点拨】(1)排列组合中,遵循特殊元素优先排列的原则;(2)两个常用的计数原理:分类加法和分步乘法原理.2、B【解题分析】试题分析:设F(x)=f(x)-g(x),∵在[A,B]上f'(x)<g'(x),F′(x)=f′(x)-g′(x)<0,∴F(x)在给定的区间[A,B]上是减函数.∴当x>A时,F(x)<F(A),即f(x)-g(x)<f(A)-g(A)即f(x)+g(A)<g(x)+f(A)考点:利用导数研究函数的单调性3、C【解题分析】分析:根据的图象与轴的交点个数不少于2个,可得函数的图象与的交点个数不少于2个,在同一坐标系中画出两个函数图象,结合图象即可得到m的取值范围.详解:的图象与轴的交点个数不少于2个,函数的图象与函数的图象的交点个数不少于2个,函数,时,函数为指数函数,过点,时,函数,为对称轴,开口向下的二次函数.,为过定点的一条直线.在同一坐标系中,画出两函数图象,如图所示.(1)当时,①当过点时,两函数图象有两个交点,将点代入直线方程,解得.②当与相切时,两函数图象有两个交点.联立,整理得则,解得,(舍)如图当,两函数图象的交点个数不少于2个.(2)当时,易得直线与函数必有一个交点如图当直线与相切时有另一个交点设切点为,,切线的斜率,切线方程为切线与直线重合,即点在切线上.,解得由图可知,当,两函数图象的交点个数不少于2个.综上,实数的取值范围是故选C.点睛:本题考查函数零点问题,考查数形结合思想、转化思想及分类讨论的思想,具有一定的难度.利用函数零点的情况,求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解(2)分离参数后转化为函数的值域(最值)问题求解(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.4、C【解题分析】
根据条件结构,分,两类情况讨论求解.【题目详解】当时,因为输出的是1,所以,解得.当时,因为输出的是1,所以,解得.综上:或.故选:C【题目点拨】本题主要考查程序框图中的条件结构,还考查了分类讨论的思想和运算求解的能力,属于基础题.5、D【解题分析】
根据所给的这组数据,取出这组数据的样本中心点,把样本中心点代入所给的四个选项中验证,若能够成立的只有一个,这一个就是线性回归方程.【题目详解】∴这组数据的样本中心点是
把样本中心点代入四个选项中,只有成立,
故选D.【题目点拨】本题考查求线性回归方程,一般情况下是一个运算量比较大的问题,解题时注意平均数的运算不要出错,注意系数的求法,运算时要细心,但是对于一个选择题,还有它特殊的加法.6、C【解题分析】∵从10个同学中挑选4名参加某项公益活动有种不同挑选方法;从甲、乙之外的8个同学中挑选4名参加某项公益活动有种不同挑选方法;∴甲、乙中至少有1人参加,则不同的挑选方法共有种不同挑选方法故选C;【考点】此题重点考察组合的意义和组合数公式;【突破】从参加“某项”切入,选中的无区别,从而为组合问题;由“至少”从反面排除易于解决;7、A【解题分析】
表示“都是0”,其否定是“不都是0”.【题目详解】反证法是先假设结论不成立,结论表示“都是0”,结论的否定为:“不都是0”.【题目点拨】在简易逻辑中,“都是”的否定为“不都是”;“全是”的否定为“不全是”,而不能把它们的否定误认为是“都不是”、“全不是”.8、C【解题分析】分析:根据集合可直接求解.详解:,,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.9、A【解题分析】
由为偶函数,知,由在(0,1)为增函数,知,由此能比较大小关系.【题目详解】∵为偶函数,∴,∵,由时,,知在(0,1)为增函数,∴,∴,故选:A.【题目点拨】本题考查函数值大小的比较,解题时要认真审题,注意函数的单调性和导数的灵活运用.10、C【解题分析】试题分析:由直方图可得分布在区间第一组与第二组共有21人,分布在区间第一组与第二组的频率分别为1.24,1.16,所以第一组有12人,第二组8人,第三组的频率为1.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.考点:频率分布直方图11、B【解题分析】由题意得是方程的两根,∴,∴.选B.12、A【解题分析】
解不等式x2【题目详解】由x2-2x>0解得:x<0或x>2,因此,x>2是x2-2x>0的充分不必要条件,故选:【题目点拨】本题考查充分必要条件的判断,一般利用集合的包含关系来判断两条件的充分必要性:(1)A⊊B,则“x∈A”是“x∈B”的充分不必要条件;(2)A⊋B,则“x∈A”是“x∈B”的必要不充分条件;(3)A=B,则“x∈A”是“x∈B”的充要条件。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
求导后,若,则,可验证出不合题意;当时,求解出的单调性,分别在,,三种情况下通过最大值取得的点构造关于最值的方程,解方程求得结果.【题目详解】由题意得:当时,,则在上单调递增,解得:,不合题意,舍去当时,令,解得:,可知在,上单调递减;在上单调递增①当,即时,解得:,不合题意,舍去②当,即时,,解得:③当,即时解得:,不合题意,舍去综上所述:本题正确结果:【题目点拨】本题考查根据函数的最值求解参数值的问题,关键是对于含有参数的函数,通过对极值点位置的讨论确定最值取得的点,从而可利用最值构造出方程,求解出参数的取值范围.14、12【解题分析】分析:过点两点分别作准线的垂线,过点作的垂线,垂足为,在直角三角形中,求得,进而得直线的斜率为,所以直线的方程,联立方程组,求得点的坐标,即可求得答案.详解:过点两点分别作准线的垂线,过点作的垂线,垂足为,设,则,因为,所以,在直角三角形中,,,所以,所以直线的斜率为,所以直线的方程为,将其代入抛物线的方程可得,解得,所以点,又由,所以所以.点睛:本题主要考查了主要了直线与抛物线的位置关系的应用问题,同时涉及到共线向量和解三角形的知识,解答本题的关键是利用抛物线的定义作出直角三角形,确定直线的斜率,得出直线的方程,着重考查了数形结合思想和推理与运算能力.15、3【解题分析】
将问题转化为求圆心到直线的距离加上半径,再由点到直线的距离公式可得结果.【题目详解】依题意可知,圆x2+y2=1上的动点P到直线3x+4y﹣10=0的距离的最大值等于圆心到直线的距离加上半径,因为圆心到直线为,圆的半径为1,所以的最大值为.故答案为:.【题目点拨】本题考查了点到直线的距离公式,属于基础题.16、【解题分析】
由已知棱柱体积与棱锥体积可得S到下底面距离与棱柱高的关系,进一步得到S到上底面距离与棱锥高的关系,则答案可求.【题目详解】设三棱柱的底面积为,高为,则,再设到底面的距离为,则,得,所以,则到上底面的距离为,所以三棱锥的体积为.故答案为1.【题目点拨】本题考查棱柱、棱锥体积的求法,考查空间想象能力、思维能力与计算能力,考查数形结合思想,三棱锥体积为,本题是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解题分析】
(1)先对函数求导,得到,根据函数极值点,结合韦达定理,即可求出结果;(2)先由(1)得到解析式,求出点,根据导函数,求出切线斜率,得到切线方程,进而求出,两点坐标,即可求出三角形面积.【题目详解】(1)由题意可得,,因为函数有两个极值点和3.所以的两根为和3.由韦达定理知,,解得,∴(2)由(1)知,,∴,所以切线的斜率所以切线的方程为:此时,,所以【题目点拨】本题主要考查由函数的极值点求参数的问题,以及求函数在某点处的切线方程,熟记导数的几何意义即可,属于常考题型.18、(1)单调递减区间为,单调递增区间为;(2).【解题分析】
(1)将代入函数的解析式,求出该函数的定义域,求出导数,在定义域内分别解出不等式和,可得出函数的单调减区间和增区间;(2)由,利用参变量分离得,构造函数,将问题转化为,然后利用导数求出函数的最大值,可得出实数的取值范围.【题目详解】(1)当时,,函数的定义域为,,当时,,当时,.所以,函数的单调递减区间为,单调递增区间为;(2)由,得,构造函数,则.,令,得.当时,;当时,.所以,函数在处取得极大值,亦即最大值,即.,因此,实数的取值范围是.【题目点拨】本题考查利用导数求函数的单调区间,以及利用导数研究不等式恒成立问题,常用分类讨论法与参变量分离法,转化为函数的最值来求解,考查化归与转化数学思想,属于中等题.19、(1)30;(2)91种;(3)120种.【解题分析】
试题分析:(1)根据题意,分别计算“从5名男生中选出2人”和“从4名女生中选出2人”的选法数目,由分步计数原理计算可得答案;
(2)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“甲乙都没有入选”的选法数目,即可得答案;
(3)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“只有男生”和“只有女生”的选法数目,即可得答案.试题解析:(1);(2)方法1:(间接法)在9人选4人的选法中,把男甲和女乙都不在内的去掉,就得到符合条件的选法数为:(种);方法2:(直接法)甲在内乙不在内有种,乙在内甲不在内有种,甲、乙都在内有种,所以男生中的甲与女生中的乙至少有1人在内的选法共有:(种).(3)方法1:(间接法)在9人选4人的选法中,把只有男生和只有女生的情况排除掉,得到选法总数为:(种);方法2:(直接法)分别按含男1,2,3人分类,得到符合条件的选法总数为:(种).点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.20、(1);(2)【解题分析】
(1)求出的导数,把代入导数得斜率,把代入即可得时的坐标。根据点斜式即可得切线方程。(2)转化成,令,当时的最大值为0,求的取值范围即可。【题目详解】(1)当时在处的切线方程为:(2)由题意得令则再令,则由,所以在上为减函数。且【题目点拨】本题主要考查了求函数在某一点的切线方程以及利用导数解决函数恒成立求参数范围的问题。属于中等题。21、(Ⅰ)见解析(Ⅱ)【解题分析】
(Ⅰ)过作垂线,垂足为,由得,.又,可得平面,即可证明.(Ⅱ)易得到平面距离等于到平面距离.过作垂线,垂足为,在中,过作垂线,垂足为,可证得:平面.求得:,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025仓库管理员题库及答案
- 模具工操作评估能力考核试卷含答案
- 铝粒工安全生产能力评优考核试卷含答案
- 香料精制工安全技能测试竞赛考核试卷含答案
- 锻件切边工创新方法竞赛考核试卷含答案
- 碳八抽提苯乙烯装置操作工岗前品牌建设考核试卷含答案
- 电子产品制版工常识水平考核试卷含答案
- 过滤与分离机械装配调试工变革管理模拟考核试卷含答案
- 公司叉车司机应急处置技术规程
- 工程测量员安全知识宣贯强化考核试卷含答案
- 新教科版科学六年级上册知识点
- 202211六年级期中数学考试试卷(102份)
- 中建某公司项目部质量管理奖励与处罚条例
- GBZ/T(卫生) 201.5-2015放射治疗机房的辐射屏蔽规范第5部分:质子加速器放射治疗机房
- GB/T 13384-2008机电产品包装通用技术条件
- GA/T 167-2019法医学中毒尸体检验规范
- FZ/T 07019-2021针织印染面料单位产品能源消耗限额
- 第三章 第1节 水与水溶液 第1课时水的电离 课件 高二上学期化学鲁科版(2019)选择性必修1
- 国家储备林基地建设项目实施方案
- 体检主要检查项目及临床意义共23张课件
- 中国脓毒症及脓毒性休克急诊治疗指南
 
            
评论
0/150
提交评论