版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省承德实验中学2024届高二数学第二学期期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中,,是的中点,若,则().A. B. C. D.2.如图,有一种游戏画板,要求参与者用六种颜色给画板涂色,这六种颜色分别为红色、黄色1、黄色2、黄色3、金色1、金色2,其中黄色1、黄色2、黄色3是三种不同的颜色,金色1、金色2是两种不同的颜色,要求红色不在两端,黄色1、黄色2、黄色3有且仅有两种相邻,则不同的涂色方案有()A.120种 B.240种 C.144种 D.288种3.若,则()A. B. C. D.4.设是定义在上的偶函数,对,都有,且当时,,若在区间内关于的方程恰好有三个不同的实数根,则的取值范围是()A. B. C. D.5.已知函数是定义在上的函数,且满足,其中为的导数,设,,,则、、的大小关系是A. B. C. D.6.已知为虚数单位,复数满足,则的共轭复数()A. B. C. D.7.设,,,则下列正确的是A. B. C. D.8.若函数在上可导,,则()A.2 B.4 C.-2 D.-49.将两颗骰子各掷一次,设事件A为“两颗骰子向上点数不同”,事件B为“至少有一颗骰上点数为3点”则()A. B. C. D.10.已知为虚数单位,则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.,,三个人站成一排照相,则不站在两头的概率为()A. B. C. D.12.在一次数学单元测验中,甲、乙、丙、丁四名考生只有一名获得了满分.这四名考生的对话如下,甲:我没考满分;乙:丙考了满分;丙:丁考了满分;丁:我没考满分.其中只有一名考生说的是真话,则考得满分的考生是()A.甲 B.乙 C.丙 D.丁二、填空题:本题共4小题,每小题5分,共20分。13.对具有线性相关关系的变量,,有一组观察数据,其回归直线方程是:,且,,则实数的值是__________.14.由海军、空军、陆军各3名士兵组成一个有不同编号的的小方阵,要求同一军种不在同一行,也不在同一列,有_____种排法15.在区间[]上随机取一个实数,则事件“”发生的概率为____.16.已知,2sin2α=cos2α+1,则cosα=__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)若恒成立,求的取值范围.18.(12分)从6名男生和4名女生中任选4人参加比赛,设被选中女生的人数为随机变量,求:(1)的分布列;(2)所选女生不少于2人的概率.19.(12分)已知的展开式中,前三项系数成等差数列.(1)求含项的系数;(2)将二项式的展开式中所项重新排成一列,求有理项互不相邻的概率.20.(12分)中国高铁的快速发展给群众出行带来巨大便利,极大促进了区域经济社会发展.已知某条高铁线路通车后,发车时间间隔(单位:分钟)满足,经测算,高铁的载客量与发车时间间隔相关:当时高铁为满载状态,载客量为人;当时,载客量会在满载基础上减少,减少的人数与成正比,且发车时间间隔为分钟时的载客量为人.记发车间隔为分钟时,高铁载客量为.求的表达式;若该线路发车时间间隔为分钟时的净收益(元),当发车时间间隔为多少时,单位时间的净收益最大?21.(12分)某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在[50,60),[90,100]的数据).1)求样本容量和频率分布直方图中的2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量表示所抽取的3株高度在[80,90)内的株数,求随机变量的分布列及数学期望.22.(10分)已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)设点是轨迹上位于第一象限且在直线右侧的动点,若以为圆心,线段为半径的圆与有两个公共点.试求圆在右焦点处的切线与轴交点纵坐标的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
作出图象,设出未知量,在中,由正弦定理可得,进而可得,在中,还可得,建立等式后可得,再由勾股定理可得,即可得出结论.【题目详解】解:如图,设,,,,在中,由正弦定理可得,代入数据解得,故,而在中,,故可得,化简可得,解之可得,再由勾股定理可得,联立可得,故在中,,故选:D.【题目点拨】本题考查正弦定理的应用,涉及三角函数的诱导公式以及勾股定理的应用,属于中档题.2、D【解题分析】
首先计算出“黄色1、黄色2、黄色3有且仅有两个相邻的涂色方案”数,然后计算出“红色在左右两端,黄色1、黄色2、黄色3有且仅有两个相邻的涂色方案”数,用前者减去后者,求得题目所求不同的涂色方案总数.【题目详解】不考虑红色的位置,黄色1、黄色2、黄色3有且仅有两个相邻的涂色方案有种.这种情况下,红色在左右两端的涂色方案有种;从而所求的结果为种.故选D.【题目点拨】本小题主要考查涂色问题,考查相邻问题、不在两端的排列组合问题的求解策略,考查对立事件的方法,属于中档题.3、D【解题分析】
由于两个对数值均为正,故m和n一定都小于1,再利用对数换底公式,将不等式等价变形为以10为底的对数不等式,利用对数函数的单调性比较m、n的大小即可【题目详解】∵∴0<n<1,0<m<1且即lg0.5()>0⇔lg0.5()>0∵lg0.5<0,lgm<0,lgn<0∴lgn﹣lgm<0即lgn<lgm⇔n<m∴1>m>n>0故选D.【题目点拨】本题考查了对数函数的图象和性质,对数的运算法则及其换底公式的应用,利用图象和性质比较大小的方法4、D【解题分析】由f(x−2)=f(x+2),可得函数的周期T=4,当x∈[−2,0]时,,∴可得(−2,6]的图象如下:从图可看出,要使f(x)的图象与y=loga(x+2)的图象恰有3个不同的交点,则需满足,求解不等式组可得的取值范围是.本题选择D选项.5、A【解题分析】
构造函数,根据的单调性得出结论.【题目详解】解:令,则,在上单调递增,又,,即,即故选:.【题目点拨】本题考查了导数与函数的单调性,考查函数单调性的应用,属于中档题.6、A【解题分析】由,得,故选A.7、B【解题分析】
根据得单调性可得;构造函数,通过导数可确定函数的单调性,根据单调性可得,得到,进而得到结论.【题目详解】由的单调递增可知:,即令,则令,则当时,;当时,即:在上单调递增,在上单调递减,即,即:综上所述:本题正确选项:【题目点拨】本题考查根据函数单调性比较大小的问题,难点在于比较指数与对数大小时,需要构造函数,利用导数确定函数的单调性;需要注意的是,在得到导函数的零点后,需验证零点与之间的大小关系,从而确定所属的单调区间.8、D【解题分析】由题设可得,令可得,所以,则,应选答案D.9、D【解题分析】
用组合数公式计算事件A和事件AB包含的基本事件个数,代入条件概率公式计算.【题目详解】解:两颗骰子各掷一次包含的基本事件的个数是1.事件A包含的基本事件个数有,则.事件AB包含的基本事件个数为10,则.所以在事件A发生的条件下,事件B发生的概率为:,故选:D.【题目点拨】本题考查条件概率,属于基础题.10、A【解题分析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,从而可得结果.详解::由于复数,,在复平面的对应点坐标为,在第一象限,故选A.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.11、B【解题分析】分析:,,三个人站成一排照相,总的基本事件为种,不站在两头,即站中间,则有种情况,从而即可得到答案.详解:,,三个人站成一排照相,总的基本事件为种,不站在两头,即站中间,则有种情况,则不站在两头的概率为.故选:B.点睛:本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.12、A【解题分析】
分析四人说的话,由丙、丁两人一定是一真一假,分丙为真与丁为真进行推理判断可得答案.【题目详解】解:分析四人说的话,由丙、丁两人一定是一真一假,若丙是真话,则甲也是真话,矛盾;若丁是真话,此时甲、乙、丙都是假话,甲考了满分,故选:A.【题目点拨】本题主要考查合理推理与演绎推理,由丙、丁两人一定是一真一假进行讨论是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、0【解题分析】分析:根据回归直线方程过样本中心点计算平均数代入方程求出的值.详解:根据回归直线方程过样本中心点即答案为0.点睛:本题考查了线性回归方程过样本中心点的应用问题,是基础题.14、2592【解题分析】
假设海军为a,空军为b,陆军为c,先将a,b,c,填入的小方阵,有12种填入方法,再每个a,b,c填入3名士兵均有种,根据分步计数原理可得.【题目详解】解:假设海军为a,空军为b,陆军为c,先将a,b,c,填入的小方阵,则有种,每个a,b,c填入3名士兵均有种,故共有,故答案为:2592【题目点拨】本题考查了分步计数原理,考查了转化能力,属于难题.15、【解题分析】
由,得﹣2≤x≤0,由此利用几何概型概率计算公式能求出事件“”发生的概率.∵,∴﹣2≤x≤0,∵在区间[﹣3,5]上随机取一个实数x,∴由几何概型概率计算公式得:事件“”发生的概率为p==.故答案为:.【题目点拨】本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.16、【解题分析】
化简2sin2α=cos2α+1即可得出sinα与cosα之间的关系式,再计算即可【题目详解】因为,2sin2α=cos2α+1所以,化简得解得【题目点拨】本题考查倍角的相关计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解题分析】
(1)求出,分或两种情况讨论(2)由,得恒成立,则恒成立,然后利用导数求出右边的最大值即可【题目详解】解:(1)易知,,(i)当时对任意的恒成立;(ⅱ)当时,若,得若,得,综上,当时在上单调递增;当时,在上单调递增,在上单调递减.(2)由,得恒成立,则恒成立,令,,则令,,则,∴在上单调递减,又∵,∴在上,即;在上,即,∴在上单调递增,在上单调递减,∴,故,即的取值范围为.【题目点拨】恒成立问题首选的方法是通过分离变量,转化为最值问题.18、(1)见解析;(2).【解题分析】试题分析:(1)依题意,ξ的可能取值为0,1,2,3,4,ξ股从超几何分布,,由此能求出ξ的分布列.
(2)所选女生不少于2人的概率为,由此能求出结果.试题解析:(1)依题意,的取值为0,1,2,3,4.服从超几何分布,,.,,,,.故的分布列为:01234(2)方法1:所选女生不少于2人的概率为:.方法2:所选女生不少于2人的概率为:.19、(1)7;(2).【解题分析】
(1)利用二项式定理求出前三项的系数的表达式,利用这三个系数成等差数列并结合组合数公式求出的值,再利用二项式展开式通项可求出项的系数;(2)利用二项展开式通项求出展开式中有理项的项数为,总共是项,利用排列思想得出公共有种排法,然后利用插空法求出有理项不相邻的排法种数,最后利用古典概型概率公式可计算出所求事件的概率.【题目详解】(1)∵前三项系数、、成等差数列.,即.∴或(舍去)∴展开式中通项公式T,,,1.令,得,∴含x2项的系数为;(2)当为整数时,.∴展开式共有9项,共有种排法.其中有理项有3项,有理项互不相邻有种排法,∴有理项互不相邻的概率为【题目点拨】本题考查二项式定理指定项的系数,考查排列组合以及古典概型的概率计算,在处理排列组合的问题中,要根据问题类型选择合适的方法求解,同时注意合理使用分类计数原理和分步计数原理,考查逻辑推理与计算能力,属于中等题.20、(1)(2)发车时间间隔为分钟时,最大【解题分析】
(1)分和两段求函数的解析式,当时,,当时,,求;(2)根据(1)的结果,分段求函数,利用导数求函数的最大值.【题目详解】解:(1)当时,不妨设,因为,所以解得.因此.(2)①当时,因此,.因为,当时,,单增;当时,,单减.所以.②当时,因此,.因为,此时单减.所以,综上,发车时间间隔为分钟时,最大.【题目点拨】本题考查了分段函数求解析式,以及利用导数解实际问题的最值,本题的关键是正确表达和.21、(1)见解析;(2)见解析.【解题分析】分析:(1)由茎叶图及频率分布直方图能求出样本容量n和频率分布直方图中的x,y;(2)由题意可知,高度在[80,90)内的株数为5,高度在[90,100]内的株数为2,共7株.抽取的3株中高度在[80,90)内的株数的可能取值为1,2,3,分别求出相应的概率,由此能求出X的分布列和期望.详解:(1)由题意可知,样本容量,.(2)由题意可知,高度在[80,90)内的株数为5,高度在[90,100]内的株数为2,共7株.抽取的3株中高度在[80,90)内的株数的可能取值为1,2,3,则,,.123故.点睛:本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求法,考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 富士康生产安全培训课件
- 家长防控培训课件
- 家长委员会家长培训课件
- 医务人员职业暴露标准防护与应急处置实务操作指南
- 2026年家政钟点工合同
- 房屋买卖合同2026年提前解约协议
- 2026年宠物保险理赔服务合同协议
- 2026年食材配送服务合同书
- 2026年文化传播发行合同协议
- 2026年家政人员劳动合同协议
- 2025新疆阿瓦提县招聘警务辅助人员120人参考笔试题库及答案解析
- 贵州国企招聘:2025贵州盐业(集团)有限责任公司贵阳分公司招聘考试题库附答案
- 股东会清算协议书
- 2026年湖南工程职业技术学院单招职业倾向性测试题库及完整答案详解1套
- 2025-2026学年秋季学期教学副校长工作述职报告
- 2025年春国家开放大学《消费者行为学》形考任务1-3+课程实训+案例讨论参考答案
- GB/T 3098.5-2025紧固件机械性能第5部分:自攻螺钉
- 第7课 月亮是从哪里来的 教学课件
- 2026年服装电商直播转化技巧
- 2025-2026学年小学美术浙美版(2024)二年级上册期末练习卷及答案
- 会所软装合同范本
评论
0/150
提交评论