




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
厦门市重点中学2024届八年级数学第二学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若(x﹣2)x=1,则x的值是()A.0 B.1 C.3 D.0或32.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣33.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A. B. C.4 D.54.若在实数范围内有意义,则a的取值范围是()A.a≥ B.a≤ C.a> D.a<5.如图所示,在平行四边形中,对角线和相交于点,交于点,若,则的长为()A. B. C. D.6.下列调查中,适合用普查的是()A.了解我省初中学生的家庭作业时间 B.了解“嫦娥四号”卫星零部件的质量C.了解一批电池的使用寿命 D.了解某市居民对废电池的处理情况7.已知y与x成正比例,并且时,,那么y与x之间的函数关系式为()A. B. C. D.8.下列计算中,正确的是()A.=5 B. C.=3 D.9.如图,在中,的平分线与的垂直平分线交于点,连接,若,,则的度数为()A. B. C. D.10.下列命题中,有几个真命题()①同位角相等②直角三角形的两个锐角互余③平行四边形的对角线互相平分且相等④对顶角相等A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.已知一次函数的图象过点,那么此一次函数的解析式为__________.12.比较大小:_____1.(填“>”、“=”或“<”)13.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为___.14.如图,在平面直角坐标系中,点A、B、C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是_____.15.函数中,自变量的取值范围是.16.化简:=__________.17.因式分解:.18.如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是_____度.三、解答题(共66分)19.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,点E是BC上一点(不与点B,C重合),点M是AE上一点(不与点A,E重合),连接并延长CM交AB于点G,将线段CM绕点C按顺时针方向旋转90°,得到线段CN,射线BN分别交AE的延长线和GC的延长线于D,F.(1)求证:△ACM≌△BCN;(2)求∠BDA的度数;(3)若∠EAC=15°,∠ACM=60°,AC=+1,求线段AM的长.20.(6分)如图:反比例函数的图象与一次函数的图象交于、两点,其中点坐标为.(1)求反比例函数与一次函数的表达式;(2)观察图象,直接写出当时,自变量的取值范围;(3)一次函数的图象与轴交于点,点是反比例函数图象上的一个动点,若,求此时点的坐标.21.(6分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.22.(8分)已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形.23.(8分)有一块田地的形状和尺寸如图所示,求它的面积.24.(8分)已知弹簧在一定限度内,它的长度y(厘米)与所挂重物质量x(千克)是一次函数关系.下表中记录的是两次挂不同重量重物的质量(在弹性限度内)与相对应的弹簧长度:所挂重物质量x(千克)2.55弹簧长度y(厘米)7.59求不挂重物时弹簧的长度.25.(10分)解下列各题:(1)分解因式:;(2)已知,,求的值.26.(10分)我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
根据零指数幂的性质解答即可.【题目详解】解:∵(x﹣2)x=1,∴x﹣2=1或x=0,解答x=3或x=0,故选D.【题目点拨】本题考查了零指数幂的性质,熟记零指数幂的性质是解题的关键.2、D【解题分析】∵方程ax+b=0的解是直线y=ax+b与x轴的交点横坐标,∴方程ax+b=0的解是x=-3.故选D.3、C【解题分析】
设BQ=x,则由折叠的性质可得DQ=AQ=9-x,根据中点的定义可得BD=3,在Rt△BQD中,根据勾股定理可得关于x的方程,解方程即可求解.【题目详解】设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BQD中,x2+32=(9﹣x)2,解得:x=1.故线段BQ的长为1.故选:C.【题目点拨】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.4、A【解题分析】
直接利用二次根式有意义则2a+3≥0,进而得出答案.【题目详解】解:在实数范围内有意义,则2a+3≥0,解得:.故选:A.【题目点拨】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.5、B【解题分析】
由平行四边形ABCD中,对角线AC和BD交于点O,OE∥BC,可得OE是△ACD的中位线,根据三角形中位线的性质,即可求得AD的长.【题目详解】解:∵四边形ABCD是平行四边形,
∴OA=OC,AD∥BC,
∵OE∥BC,
∴OE∥AD,
∴OE是△ACD的中位线,
∵OE=4cm,
∴AD=2OE=2×4=8(cm).
故选:B.【题目点拨】此题考查了平行四边形的性质以及三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.6、B【解题分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【题目详解】解:A、了解我省初中学生的家庭作业时间,适合抽样调查,故此选项错误;
B、了解“嫦娥三号”卫星零部件的状况,适合用普查,符合题意;
C、华为公司一批某型号手机电池的使用寿命,适合抽样调查,故此选项错误;
D、了解某市居民对废电池的处理情况,适合抽样调查,故此选项错误;
故选:B.【题目点拨】本题考查抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7、A【解题分析】
根据y与x成正比例,可设,用待定系数法求出k值.【题目详解】解:设,将,,代入得:解得:k=8,所以y与x之间的函数关系式为.故答案为:A【题目点拨】本题考查了正比例函数的解析式,根据正比例函数的定义设出其表达式是解题的关键.8、A【解题分析】
根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【题目详解】解:∵=5,故选项A正确,∵不能合并,故选项B错误,∵,故选项C错误,∵,故选项D错误,故选:A.【题目点拨】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.9、B【解题分析】
根据线段的垂直平分线的性质得到PB=PC,得到∠PBC=∠PCB,根据角平分线的定义、三角形内角和定理列式计算即可.【题目详解】如图,∵BP是∠ABC的平分线,∴∠ABP=∠CBP,∵PE是线段BC的垂直平分线,∴PB=PC,∴∠PBC=∠PCB,∴∠ABP=∠CBP=∠PCB,∴∠ABP+∠ABP+∠ABP+12°+75°=180°,解得,∠ABP=31°,故选B.【题目点拨】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10、B【解题分析】
解:①只有在两直线平行的前提下,同位角才相等,错误;②直角三角形的两个锐角互余,正确;③平行四边形的对角线互相平分,不一定相等,错误;④对顶角相等,正确故选B二、填空题(每小题3分,共24分)11、【解题分析】
用待定系数法即可得到答案.【题目详解】解:把代入得,解得,所以一次函数解析式为.故答案为【题目点拨】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.12、>.【解题分析】【分析】先求出1=,再比较即可.【题目详解】∵12=9<10,∴>1,故答案为:>.【题目点拨】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.13、(﹣,2)【解题分析】
根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.【题目详解】∵直线y=﹣x+4与x轴、y轴分别交于A、B两点,∴点A的坐标为(3,0),点B的坐标为(0,4).过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,∴OC=3,OE=2,∴CE==,∴点C的坐标为(﹣,2).故答案为:(﹣,2).【题目点拨】本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.14、(2,5).【解题分析】
连接AB,BC,运用平行四边形性质,可知AD∥BC,所以点D的纵坐标是5,再跟BC间的距离即可推导出点D的纵坐标.【题目详解】解:由平行四边形的性质,可知D点的纵坐标一定是5;又由C点相对于B点横坐标移动了1﹣(﹣3)=4,故可得点D横坐标为﹣2+4=2,即顶点D的坐标(2,5).故答案为(2,5).【题目点拨】本题主要是对平行四边形的性质与点的坐标的表示等知识的直接考查,同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求不高.15、x≠1【解题分析】,x≠116、2x【解题分析】
根据分式的除法法则进行计算即可.【题目详解】故答案为:.【题目点拨】本题考查了分式除法运算,掌握分式的除法法则是解题的关键.17、【解题分析】
解:=;故答案为18、65°.【解题分析】
利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.【题目详解】在平行四边形ABCD中,∠A=130°,∴∠BCD=∠A=130°,∠D=180°-130°=50°,∵DE=DC,∴∠ECD=(180°-50°)=65°,∴∠ECB=130°-65°=65°.故答案为65°.三、解答题(共66分)19、(1)见解析;(2)∠BDA=90°;(3)AM=.【解题分析】
(1)根据题意可知∠ACM=∠BCN,再利用SAS即可证明(2)根据(1)可求出∠ACE=∠BDE=90°,即可解答(3)作MH⊥AC交AC于H.在AC上取一点,使得AQ=MQ,设EH=a.可知AQ=QM=2a,QH=a,再求出a的值,利用勾股定理即可解答【题目详解】(1)∵∠ACB=90°,∠MCN=90°,∴∠ACM=∠BCN,在△MAC和△NBC中,∴△MAC≌△NBC(SAS).(2)∵△MAC≌△NBC,∴∠NBC=∠MAC∵∠AEC=∠BED,∴∠ACE=∠BDE=90°,∴∠BDA=90°.(3)作MH⊥AC交AC于H.在AC上取一点,使得AQ=MQ,设EH=a.∵AQ=QM,∴∠QAE=∠AMQ=15°,∴∠EQH=30°,∴AQ=QM=2a,QH=a,∵∠ECH=60°,∴CH=a,∵AC=+1,∴2a+a+a=+1,∴a=,∵AM==(+)a=.【题目点拨】此题考查了三角形全等的性质和判定,勾股定理,解题关键在于先利用SAS判定三角形全等20、(1),;(2)或;(3)(12,)或(-12,)【解题分析】
(1)把A点坐标代入中求出k得到反比例函数解析式,把A点坐标代入中求出b得到一次函数解析式;(2)由函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可;(3)设P(x,),先利用一次解析式解析式确定C(0,1),再根据三角形面积公式得到,然后解绝对值方程得到x的值,从而得到P点坐标.【题目详解】解:(1)把A(1,2)代入得k=2,∴反比例函数解析式为,把A(1,2)代入得,解得,∴一次函数解析式为;(2)由函数图象可得:当y1<y2时,-2<x<0或x>1;(3)设P(x,),当x=0时,,∴C(0,1),∵S△OCP=6,∴,解得,∴P(12,)或(-12,).【题目点拨】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.21、证明见解析【解题分析】
首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.【题目详解】解:∵DE=BF,∴DE+EF=BF+EF,即DF=BE,在Rt△ADF和Rt△CBE中,,∴Rt△ADF≌Rt△CBE(HL),∴AF=CE.【题目点拨】本题考查了全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.22、(1)见解析(2)见解析【解题分析】
(1)由三角形中位线知识可得DF∥BG,GH∥BF,根据菱形的判定的判定可得四边形FBGH是菱形;
(2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解.【题目详解】(1)∵点F、G是边AC的三等分点,
∴AF=FG=GC.
又∵点D是边AB的中点,
∴DH∥BG.
同理:EH∥BF.
∴四边形FBGH是平行四边形,
连结BH,交AC于点O,
∴OF=OG,
∴AO=CO,
∵AB=BC,
∴BH⊥FG,
∴四边形FBGH是菱形;
(2)∵四边形FBGH是平行四边形,
∴BO=HO,FO=GO.
又∵AF=FG=GC,
∴AF+FO=GC+GO,即:AO=CO.
∴四边形ABCH是平行四边形.
∵AC⊥BH,AB=BC,
∴四边形ABCH是正方形.【题目点拨】本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键.23、面积为1.【解题分析】
在直角△ACD中,已知AD,CD,根据勾股定理可以求得AC,根据AC,BC,AB的关系可以判定△ABC为直角三角形,根据直角三角形面积计算公式即可计算四边形ABCD的面积.【题目详解】解:连接AC,在Rt△ACD中,AC为斜边,已知AD=4,CD=3,则AC==5,∵AC2+BC2=AB2,∴△ABC为直角三角形,∴S四边形ABCD=S△ABC﹣S△ACD=AC•CB﹣AD•DC=1,答:面积为1.【题目点拨】本题考查了勾股定理及其逆定理在实际生活中的运用,考查了直角三角形面积的计算,本题中正确的判定△ABC为直角三角形是解题的关键.24、不挂重物时弹簧的长度为1厘米【解题分析】
弹簧总长y=挂上xkg的重物时弹簧伸长的长度+弹簧原来的长度,把相关数值代入即可.【题目详解】设长度y(厘米)与所挂重物质量x(千克)的一次函数关系式是:y=kx+b(k≠0)将表格中数据分别代入为:,解得:,∴y=x+1,当x=0时,y=1.答:不挂重物时弹簧的长度为1厘米【题目点拨】此题考查一次函数的应用,解题关键在于列出方程25、(1);(2)-12【解题分析】
(1)都含有因数,利用提取公因式法即可解答(2)先提取公因式xy,再根据完全平方公式进行二次分解,然后代入数据计算即可得解.【题目详解】解:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化学安全培训考核课件
- 先秦文学课件
- 化学品安全培训漫画课件
- 第四单元名著导读《简爱》公开课一等奖创新教学设计
- 6 飞向蓝天的恐龙 公开课一等奖创新教案
- 创伤性肋骨骨折课件
- 12在牛肚子里旅行第2课时 同步+公开课一等奖创新教学设计+学习任务单+分层练习+听写
- 2026年中考语文文言文专练专题04古诗词鉴赏之表现手法(讲义)(学生版+解析)
- 客服岗位月度汇报
- 路基挖方施工技术交底
- PICC堵管原因与再通方法
- 标杆地产五星级酒店精装修标准
- 脑器质性精神障碍患者的护理查房
- (高清版)TDT 1013-2013 土地整治项目验收规程
- 初中数学分层作业设计举例-有理数
- 西方经济学简史
- 信息管理系统的设计与实现
- 新闻报道与舆论导向
- 局放实验操作规程
- 透明土实验技术的研究进展
- 戴海崎心理与教育测量第4版课后习题答案
评论
0/150
提交评论