版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省启东市数学八年级第二学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.把代数式因式分解,结果正确的是()A. B. C. D.2.下列函数中,自变量的取值范围是的是()A. B. C. D.3.已知,则的值为()A. B. C.2 D.4.多项式与多项式的公因式是()A. B. C. D.5.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)6.如图,在菱形中,是菱形的高,若对角线、的长分别是6、8,则的长是A. B. C. D.57.一元二次方程x2A.x0 B.x1 C.x0,x1 D.无实根8.矩形、菱形和正方形的对角线都具有的性质是()A.互相平分 B.互相垂直 C.相等 D.任何一条对角线平分一组对角9.如图,把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,若直线DF垂直平分AB,垂足为点E,连接BF,CE,且BC=2,下面四个结论:①BF=;②∠CBF=45°;③△BEC的面积=△FBC的面积;④△ECD的面积为,其中正确的结论有()A.1个 B.2个 C.3个 D.4个10.分式有意义的条件是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,已知矩形ABCD中,,,E,F,G,H分别是AB,BC,CD,DA的中点,则四边形EFGH的周长等于_____cm。12.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是.13.小张将自己家里1到6月份的用电量统计并绘制成了如图所示的折线统计图,则小张家1到6月份这6个月用电量的众数与中位数的和是_____度.14.如图,直角边分别为3,4的两个直角三角形如图摆放,M,N为斜边的中点,则线段MN的长为_____.15.若直线y=x+h与y=2x+3的交点在第二象限,则h的取值范围是_____.16.如图,在菱形ABCD中,AC=8,菱形ABCD的面积为24,则菱形ABCD周长为________17.关于的x方程=1的解是正数,则m的取值范围是_____.18.某班30名学生的身高情况如下表:身高(m)1.451.481.501.531.561.60人数256854则这30名学生的身高的众数是______.三、解答题(共66分)19.(10分)甲、乙两个超市以同样的价格出售同样的商品,但各自推出不同的优惠方案:在甲超市累计购物超过100元后,超过100元的部分按80%收费;在乙超市累计购物超过50元后,超过50元的部分按90%收费.设小明在同一超市累计购物元,他在甲超市购物实际付费(元).在乙超市购物实际付费(元).(1)分别求出,与的函数关系式.(2)随着小明累计购物金额的变化,分析他在哪家超市购物更合算.20.(6分)已知:如图,一块Rt△ABC的绿地,量得两直角边AC=8cm,BC=6cm.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8cm为直角边长的直角三角形,求扩充等腰△ABD的周长.(1)在图1中,当AB=AD=10cm时,△ABD的周长为.(2)在图2中,当BA=BD=10cm时,△ABD的周长为.(3)在图3中,当DA=DB时,求△ABD的周长.21.(6分)某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.22.(8分)某校八年级学生数学科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元检测期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:m的权重,小张的期末评价成绩为81分,则小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?23.(8分)如图1,在平面直角坐标系中,正方形ABCD顶点C(3,0),顶点D(0,4),过点A作AF⊥y轴于F点,过点B作x轴的垂线交过A点的反比例函数y=kx(k>0)的图象于E点,交x轴于G(1)求证:△CDO≌△DAF.(2)求反比例函数解析式及点E的坐标;(3)如图2,过点C作直线l∥AE,在直线l上是否存在一点P使△PAC是等腰三角形?若存在,求P点坐标,不存在说明理由.24.(8分)甲乙两车沿直路同向匀速行驶,甲、乙两车在行驶过程中离乙车出发地的路程与出发的时间的函数关系加图1所示,两车之间的距离与出发的时间的函数关系如图2所示.(1)图2中__________,__________;(2)请用待定系数法求、关于的函数解析式;(不用写自变量取值范围)(3)出发多长时间,两车相距?25.(10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.26.(10分)有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)填表…0123456...…32...(2)根据(1)中的结果,请在所给坐标系中画出函数的图象;(3)结合函数图象,请写出该函数的一条性质.
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
根据提公因式,平方差公式,可得答案.【题目详解】解:==,故选:C.【题目点拨】本题考查了因式分解,一提,二套,三检查,分解要彻底.2、D【解题分析】
根据二次根式和分式方程的性质求出各项自变量的取值范围进行判断即可.【题目详解】A.,自变量的取值范围是;B.,自变量的取值范围是;C.,自变量的取值范围是;D.,自变量的取值范围是;故答案为:D.【题目点拨】本题考查了方程自变量的问题,掌握二次根式和分式方程的性质是解题的关键.3、B【解题分析】试题解析:设=k,则a=2k,b=3k,c=4k.
所以=,
故选B.点睛:已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来,实现消元.4、A【解题分析】试题分析:把多项式分别进行因式分解,多项式=m(x+1)(x-1),多项式=,因此可以求得它们的公因式为(x-1).故选A考点:因式分解5、C【解题分析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【题目详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【题目点拨】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.6、B【解题分析】
由菱形的性质可得AC⊥BD,BO=DO=4,CO=AO=3,由勾股定理可求CB=5,由菱形的面积公式可求AE的长.【题目详解】解:四边形是菱形,,故选:.【题目点拨】本题菱形的性质,熟练运用菱形的面积公式是本题的关键.7、C【解题分析】
先移项得到x2-x=0,再把方程左边分解因式得到xx-1=0,原方程转化为x=0【题目详解】∵x∴xx-1∴x=0或x-1=0,∴x=0,x=1.故选:C.【题目点拨】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.8、A【解题分析】
因为平行四边形的对角线互相平分、正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,可知正方形、矩形、菱形都具有的特征是对角线互相平分.【题目详解】解:根据平行四边形、矩形、菱形、正方形的对角线相互平分的性质,可知选A.
故选:A.【题目点拨】此题综合考查了平行四边形、矩形、菱形、正方形的对角线的性质,熟练掌握平行四边形、矩形、菱形、正方形的性质是解题的关键.9、C【解题分析】
根据旋转的性质得到△BCF为等腰直角三角形,故可判断①②,根据三角形的面积公式即可判断③,根据直线DF垂直平分AB可得EH是△ABC的中位线,各科求出EH的长,再根据三角形的面积公式求出△ECD的面积即可判断④.【题目详解】∵把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,∴CB=FC,∠BCF=90°,∴△BCF为等腰直角三角形,故∠CBF=45°,②正确;∵BC=2,∴FC=2,∴BF==,①正确;过点E作EH⊥BD,∵△BEC和△FBC的底都为BC,高分别为EH和FC,且EH≠FC,∴△BEC的面积≠△FBC的面积,③错误;∵直线DF垂直平分AB,∴AF=BF=,∴CD=AC=2+∵直线DF垂直平分AB,则E为AB中点,又AC⊥BC,EH⊥BC,∴EH是△ABC的中位线,∴EH=AC=1+,△ECD的面积为×CD×EH=,故④正确,故选C.【题目点拨】此题主要考查旋转的性质,解题的关键是熟知全等三角形的性质、垂直平分线的性质、三角形中位线的判定与性质.10、B【解题分析】
根据分式的定义即可判断.【题目详解】依题意得0,解得,故选B.【题目点拨】此题主要考查分式有意义的条件,解题的关键是熟知分式的性质.二、填空题(每小题3分,共24分)11、20【解题分析】
连接AC、BD,根据三角形的中位线求出HG,GF,EF,EH的长,再求出四边形EFGH的周长即可.【题目详解】如图,连接AC、BD,四边形ABCD是矩形,AC=BD=8cm,E、F、G、H分别是AB、BC、CD、DA的中点,HG=EF=AC=4cm,EH=FG=BD=4cm,四边形EFGH的周长等于4+4+4+4=16cm.【题目点拨】本题考查了矩形的性质,三角形的中位线的应用,能求出四边形的各个边的长是解此题的关键,注意:矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半.12、10%.【解题分析】
设平均每次降价的百分率为,那么第一次降价后的售价是原来的,那么第二次降价后的售价是原来的,根据题意列方程解答即可.【题目详解】设平均每次降价的百分率为,根据题意列方程得,,解得,(不符合题意,舍去),答:这个百分率是.故答案为.【题目点拨】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.13、1【解题分析】
根据折线统计图,可得1到6月份的用电量的众数与中位数,相加求和即可.【题目详解】解:根据1到6月份用电量的折线统计图,可得150出现的次数最多,为2次,故用电量的众数为150(度);1到6月份用电量按大小排列为:250,225,150,150,128,125,50,故中位数为150(度),∴众数与中位数的和是:150+150=1(度).故答案为1.【题目点拨】本题主要考查了中位数以及众数的定义,解决问题的关键是掌握:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.解题时注意:一组数据中出现次数最多的数据叫做众数.14、【解题分析】
根据勾股定理求出斜边长,根据直角三角形的性质得到CM=,CN=,∠MCB=∠ECN,∠MCE=∠NCD,根据勾股定理计算即可.【题目详解】解:如图连接CM、CN,由勾股定理得,AB=DE=,△ABC、△CDE是直角,三角形,M,N为斜边的中点,CM=CN=,∠MCB=∠ECN,∠MCE=∠NCD,∠MCN=,MN=.因此,本题正确答案是:.【题目点拨】本题主要考查三角形的性质及计算,灵活做辅助线是解题的关键.15、<h<1【解题分析】
将两直线解析式联立,求得交点坐标,然后根据交点在第二象限,列出一元一次不等式组,求解即可.【题目详解】将两直线解析式联立得:解得∵交点在第二象限∴∴<h<1故答案为:<h<1.【题目点拨】本题考查了二元一次方程组的解法及一元一次不等式组的解法,本题难度不大.16、20【解题分析】
根据菱形面积公式可求BD的长,根据勾股定理可求菱形边长,即可求周长.【题目详解】解:∵S菱形ABCD=12AC×BD∴24=12×8×BD∴BD=6,∵ABCD是菱形,∴AO=CO=4,BO=DO=3,AC⊥BD,∴AB=A∴菱形ABCD的周长为4×5=20.【题目点拨】本题考查了菱形的性质,利用菱形的面积公式求BD的长是本题的关键.17、m>﹣5且m≠0【解题分析】
先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围即可.【题目详解】去分母,得m=x-5,即x=m+5,∵方程的解是正数,∴m+5>0,即m>-5,又因为x-5≠0,∴m≠0,则m的取值范围是m>﹣5且m≠0,故答案为:m>﹣5且m≠0.【题目点拨】本题考查了分式方程的解,熟练掌握分式方程的解法以及注意事项是解题的关键.这里要注意分母不等于0这个隐含条件.18、1.1.【解题分析】
根据众数的定义,即出现次数最多的【题目详解】在这一组数据中1.1出现了8次,次数最多,故众数是1.1.故答案为1.1.【题目点拨】此题考查众数,难度不大三、解答题(共66分)19、(1),;(2)当小明购物金额少于150元时,去乙超市合算,等于150元时去两家超市一样,多于150元时去甲超市合算.【解题分析】
(1)根据题意得到和,即可得到答案;(2)分由、、进行分析比较即可得到答案.【题目详解】(1)由得,由得,∴与的函数关系式,(2)由得由得由得∴当小明购物金额少于150元时,去乙超市合算,等于150元时去两家超市一样,多于150元时去甲超市合算.【题目点拨】本题考查一元一次方程的应用,解题的关键是读懂题意,等到函数关系.20、(1)32m;(2)(20+4)m;(3)【解题分析】
(1)利用勾股定理得出DC的长,进而求出△ABD的周长;
(2)利用勾股定理得出AD的长,进而求出△ABD的周长;
(3)首先利用勾股定理得出DC、AB的长,进而求出△ABD的周长.【题目详解】:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,
∴则△ABD的周长为:10+10+6+6=32(m).
故答案为:32m;
(2)如图2,当BA=BD=10m时,
则DC=BD-BC=10-6=4(m),
故
则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;
故答案为:(20+4)m;
(3)如图3,∵DA=DB,
∴设DC=xm,则AD=(6+x)m,
∴DC2+AC2=AD2,
即x2+82=(6+x)2,
解得;x=
∵AC=8m,BC=6m,
∴AB=10m,
故△ABD的周长为:AD+BD+AB=2【题目点拨】此题主要考查了勾股定理的应用,根据题意熟练应用勾股定理是解题关键.21、36平方米【解题分析】
连接AC,根据勾股定理,求得AC,再根据勾股定理的逆定理,判断三角形ACD是直角三角形.这块草坪的面积等于两个直角三角形的面积之和.【题目详解】连接AC,如图,∵AB⊥BC,∴∠ABC=90°.∵AB=3米,BC=4米,∴AC=5米.∵CD=12米,DA=13米,∴CD2+AC2=144+25=169=132=DA2,∴∠ACD=90°,∴△ACD为直角三角形,∴草坪的面积等于=S△ABC+S△ACD=3×4÷2+5×12÷2=6+30=36(米2).【题目点拨】本题考查了勾股定理和勾股定理的逆定理.22、(1)80分;(2)小王在期末应该至少考85分才能达到优秀.【解题分析】分析:(1)小张期末评价成绩=(小张完成作业分+小张的单元检测+小张期末考试分)÷3,
(2)先根据小张期末评价成绩及小张三项成绩求出期末考试成绩的权重.因为期末评价成绩至少80分才是优秀,所以根据题意依据小王的期末评价成绩80分来计算他的期末考试成绩即可.详解:(1)小张的期末评价成绩==80,答:小张的期末评价成绩是80分;(2)依题意得,70×+90×+80×=81解得:m=7,经检查,m=7是所列方程的解.设小王期末考试分数为x,依题意列方程得60×+75×+x=80,解得:x=84≈85,答:小王在期末应该至少考85分才能达到优秀.点睛:本题考查的知识点是平均数和加权平均数的计算,比较基础,注意计算准确.23、(1)见解析;(2)为y=28x,点E的坐标为(7,1);(3)在直线l上存在一点P使△PAC是等腰三角形,点P的坐标为(﹣3,6),(﹣2,5),(8,﹣5),(﹣76,【解题分析】
(1)利用同角的余角相等可得出∠CDO=∠DAF,结合∠DOC=∠AFD=90°及DC=AD,可证出△CDO≌△DAF;(2)利用全等三角形的性质可求出AF,FD的长,进而可得出点A的坐标,由点A的坐标,利用反比例函数图象上点的坐标特征可求出反比例函数解析式,同(1)可证出△CDO≌△BCG,利用全等三角形的性质及反比例函数图象上点的坐标特征可求出点E的坐标;(3)由点A,E的坐标,利用待定系数法可求出直线AE的解析式,结合直线l∥AE及点C的坐标可求出直线l的解析式,设点P的坐标为(m,﹣m+3),结合点A,C的坐标可得出AC2,AP2,CP2的值,分AC=AP,CA=CP及PA=PC三种情况可得出关于m的方程,解之即可得出点P的坐标.【题目详解】(1)证明:∵四边形ABCD为正方形,∴AD=DC,∠ADC=90°,∴∠ADF+∠CDO=90°.∵∠ADF+∠DAF=90°,∴∠CDO=∠DAF.在△CDO和△DAF中,∠DOC∴△CDO和△DAF(AAS).(2)解:∵点C的坐标为(3,0),点D的坐标为(0,1),∴OC=3,OD=1.∵△CDO和△DAF,∴FA=OD=1,FD=OC=3,∴OF=OD+FD=7,∴点A的坐标为(1,7).∵反比例函数y=kx(k>0)过点A∴k=1×7=28,∴反比例函数解析式为y=28x同(1)可证出:△CDO≌△BCG,∴GB=OC=3,GC=OD=1,∴OG=OC+GC=7,∴点G的坐标为(7,0).当x=7时,y=287=1∴点E的坐标为(7,1).(3)解:设直线AE的解析式为y=ax+b(a≠0),将A(1,7),E(7,1)代入y=ax+b,得:4a+b=77a+b=4解得:a=-1b=11∴直线AE的解析式为y=﹣x+2.∵直线l∥AE,且直线l过点C(3,0),∴直线l的解析式为y=﹣x+3.设点P的坐标为(m,﹣m+3),∵点A的坐标为(1,7),点C的坐标为(3,0),∴AP2=(m﹣1)2+(﹣m+3﹣7)2=2m2+32,AC2=(3﹣1)2+(0﹣7)2=50,CP2=(m﹣3)2+(﹣m+3)2=2m2﹣12m+4.分三种情况考虑:①当AC=AP时,50=2m2+32,解得:m1=3(舍去),m2=﹣3,∴点P的坐标为(﹣3,6);②当CA=CP时,50=2m2﹣12m+4,解得:m3=﹣2,m1=8,∴点P的坐标为(﹣2,5)或(8,﹣5);③当PA=PC时,2m2+32=2m2﹣12m+4,解得:m=﹣76∴点P的坐标为(﹣76,25综上所述:在直线l上存在一点P使△PAC是等腰三角形,点P的坐标为(﹣3,6),(﹣2,5),(8,﹣5),(﹣76,25【题目点拨】本题考查了正方形的性质,全等三角形的判定与性质、反比例函数图象上点的坐标特征、待定系数法求反比例函数及一次函数解析式、平行线的性质以及等腰三角形的性质,解题的关键是:(1)利用全等三角形的判定定理AAS证出△CDO≌△DAF;(2)根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 飞天凌空教学课件
- 居民住宅供暖维修服务合同
- 古诗文语言运用题试题及答案
- 汽车驾驶安全知识普及试题
- 现代生物技术伦理与社会影响试卷及答案
- 2026年小学三年级英语口语表达练习试题
- 2026年税务师考试《税法二》重点章节解析试题
- BIM技术理论知识测验试题及答案
- 企业员工考核手册
- 2026年生物细胞分裂及遗传变异试题考试
- 水晶科普内容
- 2025年人才招聘市场智能招聘平台实施方案
- 2025上海智能机器人百大场景案例集
- 年产10万吨丁二烯氰化法制己二睛绿色生产工艺的设计
- 风信子教学课件
- 穿越机的基础知识
- 撤销限高和失信申请书
- 2025年羽毛球馆场地租赁
- 天津市历史高考考试范围知识点总结
- GRR测量系统分析报告范例
- 第四章连锁及交换定律1
评论
0/150
提交评论