2024届山西省平定县联考八年级数学第二学期期末综合测试模拟试题含解析_第1页
2024届山西省平定县联考八年级数学第二学期期末综合测试模拟试题含解析_第2页
2024届山西省平定县联考八年级数学第二学期期末综合测试模拟试题含解析_第3页
2024届山西省平定县联考八年级数学第二学期期末综合测试模拟试题含解析_第4页
2024届山西省平定县联考八年级数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山西省平定县联考八年级数学第二学期期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.化简的结果是()A.﹣3 B.3 C.﹣a D.a2.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是()A.7 B.8 C.6 D.53.一次函数y=2x–6的图象不经过第()象限.A.一B.二C.三D.四4.函数自变量x的取值范围是()A.x≥1且x≠3 B.x≥1 C.x≠3 D.x>1且x≠35.下列调查方式中适合的是()A.要了解一批节能灯的使用寿命,采用普查方式B.调查你所在班级同学的身高,采用抽样调查方式C.环保部门调查长江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用普查方式6.如图,在四边形中,,对角线、相交于点O,于点E,于点F,连接、,若,则下列结论不一定正确的是()A. B. C.为直角三角形 D.四边形是平行四边形7.如图,边长为1的方格纸中有一四边形ABCD(A,B,C,D四点均为格点),则该四边形的面积为()A.4 B.6 C.12 D.248.在△ABC中,AB=6,AC=8,BC=10,则该三角形为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形9.式子的值()A.在2到3之间 B.在3到4之间 C.在4到5之间 D.等于3410.在四边形ABCD中,对角线AC、BD相交于点O,从①AB=CD;②AB∥CD;③OA=OC;④OB=OD;⑤AC⊥BD;⑥AC平分∠BAD;这六个条件中,则下列各组组合中,不能推出四边形ABCD为菱形的是( )A.①②⑤ B.①②⑥ C.③④⑥ D.①②④11.下列各图象中,()表示y是x的一次函数.A. B.C. D.12.下列命题中,错误的是().A.矩形的对角线互相平分且相等 B.对角线互相垂直的四边形是菱形C.正方形的对角线互相垂直平分 D.等腰三角形底边上的中点到两腰的距离相等二、填空题(每题4分,共24分)13.如图,在中,,点D,E,F分别是AB,AC,BC边上的中点,连结BE,DF,已知则_________.14.如图,在直角坐标系中,正方形OABC顶点B的坐标为(6,6),直线CD交直线OA于点D,直线OE交线段AB于点E,且CD⊥OE,垂足为点F,若图中阴影部分的面积是正方形OABC的面积的,则△OFC的周长为______.15.已知一组数据0,1,2,2,x,3的平均数是2,则这组数据的方差是_____.16.在中,,,,则斜边上的高为________.17.某正比例函数图象经过点(1,2),则该函数图象的解析式为___________18.函数y=的自变量x的取值范围为_____.三、解答题(共78分)19.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△ABC;(2)请画出△ABC关于原点对称的△ABC;20.(8分)已知:AC是菱形ABCD的对角线,且AC=BC.(1)如图①,点P是△ABC的一个动点,将△ABP绕着点B旋转得到△CBE.①求证:△PBE是等边三角形;②若BC=5,CE=4,PC=3,求∠PCE的度数;(2)连结BD交AC于点O,点E在OD上且DE=3,AD=4,点G是△ADE内的一个动点如图②,连结AG,EG,DG,求AG+EG+DG的最小值.21.(8分)在中,,以点为旋转中心,把逆时针旋转,得到,连接,求的长.22.(10分)已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),连接DE、BF,P是DE的中点,连接AP。将△AEF绕点A逆时针旋转。(1)如图①,当△AEF的顶点E、F恰好分别落在边AB、AD时,则线段AP与线段BF的位置关系为,数量关系为。(2)当△AEF绕点A逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成立。(3)若AB=3,AE=1,则线段AP的取值范围为。23.(10分)已知,如图,A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1)(1)求△ABC的面积是____;(2)求直线AB的表达式;(3)一次函数y=kx+2与线段AB有公共点,求k的取值范围;(4)y轴上有一点P且△ABP与△ABC面积相等,则P点坐标是_____.24.(10分)如图,已知菱形ABCD边长为4,,点E从点A出发沿着AD、DC方向运动,同时点F从点D出发以相同的速度沿着DC、CB的方向运动.如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;在的前提下,求EF的最小值和此时的面积;当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则大小是否变化?请说明理由.25.(12分)已知T.(1)化简T;(2)若正方形ABCD的边长为a,且它的面积为9,求T的值.26.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=OC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为6,∠ABC=60°,求AE的长.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

先将分子因式分解,再约去分子、分母的公因式即可得.【题目详解】==,故选D.【题目点拨】本题考查了分式的约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.2、B【解题分析】

根据多边形的内角和公式及外角的特征计算.【题目详解】解:多边形的外角和是360°,根据题意得:110°•(n-2)=3×360°解得n=1.故选:B.【题目点拨】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.3、B【解题分析】分析:根据一次函数图象与系数的关系的关系解答即可.详解:∵2>0,-6<0,∴一次函数y=2x–6的图象经过一、三、四象限,不经过第二象限.故选B.点睛:本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.4、A【解题分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且.故选A.考点:函数自变量的取值范围,二次根式和分式有意义的条件.5、C【解题分析】

利用抽样调查,全面普查适用范围直接判断即可【题目详解】A.要了解一批节能灯的使用寿命,应采用抽样调查方式,故A错B.调查你所在班级同学的身高,应采用全面普查方式,故B错C.环保部门调查沱江某段水域的水质情况,应采用抽样调查方式,故C对D.调查全市中学生每天的就寝时间,应采用抽样调查方式,故D错【题目点拨】本题主要全面普查和抽样调查应用范围,基础知识牢固是解题关键6、C【解题分析】

根据平行四边形的性质与判定以及全等三角形的判定与性质分别分析得出即可.【题目详解】解:∵DE=BF,∴DF=BE,在Rt△DCF和Rt△BAE中,,∴Rt△DCF≌Rt△BAE(HL),∴CF=AE,故A正确;∵AE⊥BD于点E,CF⊥BD于点F,∴AE∥FC,∵CF=AE,∴四边形CFAE是平行四边形,∴OE=OF,故B正确;∵Rt△DCF≌Rt△BAE,∴∠CDF=∠ABE,∴CD∥AB,∵CD=AB,∴四边形ABCD是平行四边形,故D正确;无法证明为直角三角形,故C错误;故选:C.【题目点拨】本题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识;得出Rt△DCF≌Rt△BAE是解题关键.7、C【解题分析】

根据菱形的性质,已知AC,BD的长,然后根据菱形的面积公式可求解.【题目详解】解:由图可知,AB=BC=CD=DA,∴该四边形为菱形,又∵AC=4,BD=6,∴菱形的面积为4×6×=1.故选:C.【题目点拨】主要考查菱形的面积公式:两条对角线的积的一半,同时也考查了菱形的判定.8、B【解题分析】在△ABC中,AB=6,AC=8,BC=10,推断出62+82=102,由勾股定理的逆定理得此三角形是直角三角形,故选B.9、C【解题分析】分析:根据数的平方估出介于哪两个整数之间,从而找到其对应的点.详解:∵,∴4<<5,故选C.点睛:本题考查了无理数的估算以及数轴上的点和数之间的对应关系,解题的关键是求出介于哪两个整数之间.10、D【解题分析】

根据题目中所给条件可得①②组合,③④组合都能判定四边形为平行四边形,再根据一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形进行判定.【题目详解】,,四边形是平行四边形,如果加上条件⑤可利用对角线互相垂直的平行四边形是菱形进行判定;如果加上条件⑥平分可证明邻边相等,根据邻边相等的平行四边形是菱形进行判定;,,四边形是平行四边形,如果加上条件⑥平分可证明邻边相等,根据邻边相等的平行四边形是菱形进行判定.故选:.【题目点拨】此题主要考查了菱形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).11、A【解题分析】

根据一次函数的图象是直线即可解答.【题目详解】解:表示是的一次函数的图象是一条直线,观察选项,只有A选项符合题意.故选:A.【题目点拨】本题考查了函数的图象,一次函数和正比例函数的图象都是直线.12、B【解题分析】

根据矩形,正方形的性质判断A,C,根据菱形的判定方法判断B,根据等腰三角形的性质判断D.【题目详解】解:A、矩形的对角线互相平分且相等,故正确;B、对角线互相垂直平分的四边形是菱形,故B错误;C、正方形的对角线互相垂直平分,正确;D、等腰三角形底边上的中点到两腰的距离相等,正确,故选:B.【题目点拨】本题考查了命题与定理的知识,解题的关键是能够了解矩形,正方形的性质,等腰三角形的性质,菱形的判定,掌握相关知识点是关键.二、填空题(每题4分,共24分)13、1【解题分析】

已知BE是Rt△ABC斜边AC的中线,那么BE=AC;EF是△ABC的中位线,则DF=AC,则DF=BE=1.【题目详解】解:,E为AC的中点,,分别为AB,BC的中点,.故答案为:1.【题目点拨】此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.14、3+2【解题分析】

证明△COD≌△OAE,推理出△OCF面积=四边形FDAE面积=2÷2=3,设OF=x,FC=y,则xy=2,x2+y2=1,所以(x+y)2=x2+y2+2xy=30,从而可得x+y的值,则△OFC周长可求.【题目详解】∵正方形OABC顶点B的坐标为(3,3),∴正方形的面积为1.所以阴影部分面积为1×=2.∵四边形AOCB是正方形,∴∠AOC=90°,即∠COE+∠AOE=90°,又∵CD⊥OE,∴∠CFO=90°∴∠OCF+∠COF=90°,∴∠OCD=∠AOE在△COD和△OAE中∴△COD≌△OAE(AAS).∴△COD面积=△OAE面积.∴△OCF面积=四边形FDAE面积=2÷2=3.设OF=x,FC=y,则xy=2,x2+y2=1,所以(x+y)2=x2+y2+2xy=30.所以x+y=2.所以△OFC的周长为3+2.故答案为3+2.【题目点拨】本题主要考查了正方形的性质、全等三角形的判定和性质,解题的关键是推理出两个阴影部分面积相等,得到△OFC两直角边的平方和、乘积,运用完全平方公式求解出OF+FC值.15、.【解题分析】

已知数据0,1,2,2,x,3的平均数是2,由平均数的公式计算可得(0+1+2+2+x+3)÷6=2,解得x=4,再根据方差的公式可得,这组数据的方差=[(2﹣0)2+(2﹣1)2+(2﹣2)2+(2﹣2)2+(2﹣4)2+(2﹣3)2]=.16、【解题分析】

利用面积法,分别以直角边为底和斜边为底,根据三角形面积相等,可以列出方程,解得答案【题目详解】解:设斜边上的高为h,在Rt△ABC中,利用勾股定理可得:根据三角形面积两种算法可列方程为:解得:h=2.4cm,故答案为2.4cm【题目点拨】本题考查勾股定理和利用面积法算垂线段的长度,要熟练掌握.17、【解题分析】

设正比例函数的解析式为y=kx,然后把点(1,2)代入y=kx中求出k的值即可.【题目详解】解:设正比例函数的解析式为y=kx,把点(1,2)代入得,2=k×1,解得k=2,∴该函数图象的解析式为:;故答案为:.【题目点拨】本题主要考查了待定系数法求正比例函数解析式,掌握待定系数法求正比例函数解析式是解题的关键.18、x≠1.【解题分析】

根据分式有意义的条件,即可快速作答。【题目详解】解:根据分式有意义的条件,得:x-1≠0,即x≠1;故答案为:x≠1。【题目点拨】本题考查了函数自变量的取值范围,但分式有意义的条件是解题的关键。三、解答题(共78分)19、【解题分析】试题分析:根据平移的性质可知(-4,1),(-1,2),(-2,4),然后可画图;根据关于原点对称的性质横纵坐标均变为相反数,可得(-1,-1),(-4,-2),(-3,-4),然后可画图.试题解析:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;考点:坐标平移,关于原点对称的性质20、(1)①见解析,②∠PCE=30°;(2)AG+EG+DG的最小值为1.【解题分析】

(1)①先判断出△ABC等边三角形,得出∠ABC=60°,再由旋转知BP=BE,∠PBE=∠ABC=60°,即可得出结论.②先用勾股定理的逆定理判断出△ACP是直角三角形,得出∠APC=90°,进而判断出∠PBE+∠PCE=90°,即可得出结论;(2)先判断出△G'DG是等边三角形,得出GG'=DG,即:AG+EG+DG=A'G'+EG+GG'得出当A'、G'、G、E四点共线时,A'G'+EG+G'G的值最小,即可得出结论.【题目详解】解:(1)①∵四边形ABCD是菱形∴AB=BC,∵AC=BC,∴AB=BC=AC,∴△ABC等边三角形,∴∠ABC=60°,由旋转知BP=BE,∠CBE=∠ABP∴∠CBE+∠PBC=∠ABP+∠PBC∴∠PBE=∠ABC=60°,∴△PBE是等边三角形;②由①知AB=BC=1∵由旋转知△ABP≌△CBE,∴AP=CE=4,∠APB=∠BEC,∵AP2+PC2=42+32=21=AC2,∴△ACP是直角三角形,∴∠APC=90°,∴∠APB+∠BPC=270°,∵∠APB=∠CEB,∴∠CEB+∠BPC=270°,∴∠PBE+∠PCE=360°-(∠CEB+∠BPC)=90°,∵∠PBE=∠ABC=60°,∴∠PCE=90°-60°=30°;(2)如图,将△ADG绕着点D顺时针旋转60°得到△A'DG',由旋转知△ADG≌△A'DG',∴A'D=AD=4,G'D=GD,A'G'=AG,∵∠G'DG=60°,G'D=GD,∴△G'DG是等边三角形,∴GG'=DG,∴AG+EG+DG=A'G'+EG+GG'∵当A'、G'、G、E四点共线时,A'G'+EG+G'G的值最小,即AG+EG+DG的值最小,∵∠A'DA=60°,∠ADE=∠ADC=30°,∴∠A'DE=90°,∴AG+EG+DG=A'G'+EG+G'G=A'E==1,∴AG+EG+DG的最小值为1.【题目点拨】此题是四边形综合题,主要考查了等边三角形性质和判定,勾股定理,勾股定理的逆定理,旋转的性质,判断出点A',G',G,E四点共线时,A'G'+EG+G'G的值最小,是解本题的关键.21、【解题分析】

由旋转的性质得,由30°直角三角形的性质得,根据勾股定理,即可求出的长度.【题目详解】解:在中,,∵,又是由逆时针旋转得到的,,∴;【题目点拨】本题考查了旋转的性质,直角三角形的性质,以及勾股定理,解题的关键是熟练掌握旋转的性质、直角三角形、以及勾股定理进行解题.22、(1)AP⊥BF,(2)见解析;(3)1≤AP≤2【解题分析】

(1)根据直角三角形斜边中线定理可得,即△APD为等腰三角形推出∠DAP=∠EDA,可证△AED≌△ABF可得∠ABF=∠EDA=∠DAP且BF=ED由三角形内角和可得∠AOF=90°即AP⊥BF由全等可得即(2)延长AP至Q点使得DQ∥AE,PA延长线交于G点,利用P是DE中点,构造△AEP≌△PDQ可得∠EAP=∠PQD,DQ=AE=FA可得∠QDA=∠FAB可证△FAB≌△QDA得到∠AFB=∠PQD=∠EAP,AQ=FB由三角形内角和可得∠FAG=90°得出AG⊥FB即AP⊥BF由全等可得(3)由于即求BF的取值范围,当BF最小时,即F在AB上,此时BF=2,AP=1当BF最大时,即F在BA延长线上,此时BF=4,AP=2可得1≤AP≤2【题目详解】(1)根据直角三角形斜边中线定理有AP是△AED中线可得,即△APD为等腰三角形。∴∠DAP=∠EDA又AE=AF,∠BAF=∠DAE=90°,AB=AD∴△AED≌△ABF∴∠ABF=∠EDA=∠DAP且BF=ED设AP与BF相交于点O∴∠ABF+∠AFB=90°=∠DAP+∠AFB∴∠AOF=90°即AP⊥BF∴即故答案为:AP⊥BF,(2)延长AP至Q点使得DQ∥AE,PA延长线交于G点∴∠EAP=∠PQD,∠AEP=∠QDP∵P是DE中点,∴EP=DP∴△AEP≌△PDQ则∠EAP=∠PQD,DQ=AE=FA∠QDA=180°-(∠PAD+∠PQD)=180°-∠EAD而∠FAB=180°-∠EAD,则∠QDA=∠FAB∵AF=DQ,∠QDA=∠FAB,AB=AD∴△FAB≌△QDA∴∠AFB=∠PQD=∠EAP,AQ=FB而∠EAP+∠FAG=90°∴∠AFB+∠FAG=90°∴∠FAG=90°∴AG⊥FB即AP⊥BF又∴(3)∵∴即求BF的取值范围BF最小时,即F在AB上,此时BF=2,AP=1BF最大时,即F在BA延长线上,此时BF=4,AP=2∴1≤AP≤2【题目点拨】掌握三角形全等以及直角三角形斜边上的中线,灵活运用各种角关系是解题的关键。23、(1)1;(2)y=﹣x+;(3)2<k≤1或﹣≤k<2;(1)(2,)或(2,).【解题分析】

(1)根据A、B、C三点的坐标可得AC=3﹣1=2,BC=5﹣1=1,∠C=92°,再利用三角形面积公式列式计算即可;(2)设直线AB的表达式为y=kx+b.将A(1,3),B(5,1)代入,利用待定系数法即可求解;(3)由于y=kx+2是一次函数,所以k≠2,分两种情况进行讨论:①当k>2时,求出y=kx+2过A(1,3)时的k值;②当k<2时,求出y=kx+2过B(5,1)时的k值,进而求解即可;(1)过C点作AB的平行线,交y轴于点P,根据两平行线间的距离相等,可知△ABP与△ABC是同底等高的两个三角形,面积相等.根据直线平移k值不变可设直线CP的解析式为y=﹣x+n,将C点坐标代入,求出直线CP的解析式,得到P点坐标;再根据到一条直线距离相等的直线有两条,可得另外一个P点坐标.【题目详解】解:(1)∵A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1),∴AC=3﹣1=2,BC=5﹣1=1,∠C=92°,∴S△ABC=AC•BC=×2×1=1.故答案为1;(2)设直线AB的表达式为y=kx+b.∵A点坐标是(1,3),B点坐标是(5,1),∴,解得,∴直线AB的表达式为y=﹣x+;(3)当k>2时,y=kx+2过A(1,3)时,3=k+2,解得k=1,∴一次函数y=kx+2与线段AB有公共点,则2<k≤1;当k<2时,y=kx+2过B(5,1),1=5k+2,解得k=﹣,∴一次函数y=kx+2与线段AB有公共点,则﹣≤k<2.综上,满足条件的k的取值范围是2<k≤1或﹣≤k<2;(1)过C点作AB的平行线,交y轴于点P,此时△ABP与△ABC是同底等高的两个三角形,所以面积相等.设直线CP的解析式为y=﹣x+n,∵C点坐标是(1,1),∴1=﹣+n,解得n=,∴直线CP的解析式为y=﹣x+,∴P(2,).设直线AB:y=﹣x+交y轴于点D,则D(2,).将直线AB向上平移﹣=2个单位,得到直线y=﹣x+,与y轴交于点P′,此时△ABP′与△ABP是同底等高的两个三角形,所以△ABP与△ABC面积相等,易求P′(2,).综上所述,所求P点坐标是(2,)或(2,).故答案为(2,)或(2,).【题目点拨】本题考查了三角形的面积,待定系数法求一次函数的解析式,一次函数图象与系数的关系,一次函数图象上点的坐标特征,直线平移的规律等知识,直线较强,难度适中.利用数形结合、分类讨论是解题的关键.24、,证明见解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论