版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳市实验北2024届八年级数学第二学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.直线y=3x-1与y=x+3的交点坐标是()A.(2,5) B.(1,4) C.(-2,1) D.(-3,0)2.用配方法解一元二次方程x2+4x+1=0,下列变形正确的是()A.(x﹣2)2﹣3=0 B.(x+4)2=15 C.(x+2)2=15 D.(x+2)2=33.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,则四人中成绩最稳定的是()A.甲 B.乙 C.丙 D.丁4.如图,在▱ABCD中,∠C=130°,BE平分∠ABC,则∠AEB等于()A. B. C. D.5.如图,在菱形ABCD中,E,F分别是AB,AC的中点,如果EF=2,那么菱形ABCD周长是()A.4 B.8 C.12 D.166.如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE,分别交AC、AD于点F、G,连接OG,则下列结论:①OG=AB;②图中与△EGD
全等的三角形共有5个;③以点A、B、D、E为项点的四边形是菱形;④
S四边形ODGF=
S△ABF.其中正确的结论是()A.①③ B.①③④ C.①②③ D.②②④7.如图,点A在函数y=(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为()A.2 B.2 C.2+4 D.2+48.下列边长相等的正多边形的组合中,不能镶嵌平面的是()A.正三角形和正方形 B.正三角形和正六边形C.正方形和正八边形 D.正五边形和正方形9.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm10.用配方法解方程,经过配方,得到()A. B. C. D.二、填空题(每小题3分,共24分)11.计算:_________.12.一次函数的图象经过点,且与轴、轴分别交于点、,则的面积等于___________.13.已知,,则______.14.如图,已知边长为4的菱形ABCD中,AC=BC,E,F分别为AB,AD边上的动点,满足BE=AF,连接EF交AC于点G,CE、CF分别交BD与点M,N,给出下列结论:①∠AFC=∠AGE;②EF=BE+DF;③△ECF面积的最小值为3,④若AF=2,则BM=MN=DN;⑤若AF=1,则EF=3FG;其中所有正确结论的序号是_____.15.如图,菱形ABCD的对角线AC、BD相交于点O,E、F分别是AB、BC边的中点,连接EF,若EF=,BD=4,则菱形ABCD的边长为__________.16.甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,若两人比赛成绩的方差分别为S2甲=1.25和S2乙=3,则成绩比较稳定的是__________(填甲或乙).17.若分解因式可分解为,则=______。18.在▱ABCD中,如果∠A+∠C=140°,那么∠B=度.三、解答题(共66分)19.(10分)计算(1)(2)(3)(4)(+3﹣2)×220.(6分)某兴趣小组想借助如图所示的直角墙角(两边足够长),用20长的篱笆围成一个矩形(篱笆只围两边),设.(1)若花园的面积为96,求的值;(2)若在处有一棵树与墙的距离分别是11和5,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积的最大值.21.(6分)(1)计算:(2)已知,求代数式的值。22.(8分)为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.23.(8分)小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板按如图所示的位置摆放,、、三点在同一直线上,,,,,量得.(1)试求点到的距离.(2)试求的长.24.(8分)如图,正方形的边长为8,在上,且,是上的一动点,求的最小值.25.(10分)已知:如(图1),在平面直角坐标中,A(12,0),B(6,6),点C为线段AB的中点,点D与原点O关于点C对称.(1)利用直尺和圆规在(图1)中作出点D的位置(保留作图痕迹),判断四边形OBDA的形状,并说明理由;(2)在(图1)中,动点E从点O出发,以每秒1个单位的速度沿线段OA运动,到达点A时停止;同时,动点F从点O出发,以每秒a个单位的速度沿OB→BD→DA运动,到达点A时停止.设运动的时间为t(秒).①当t=4时,直线EF恰好平分四边形OBDA的面积,求a的值;②当t=5时,CE=CF,请直接写出a的值.26.(10分)先化简,再求代数式的值,其中.
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】
根据求函数图象交点的坐标,转化为求两个一次函数构成的方程组解的问题,因此联立两函数的解析式所得方程组,即为两个函数图象的交点坐标.【题目详解】联立两函数的解析式,得解得,则直线y=3x-1与y=x+3的交点坐标是,故选:A.【题目点拨】考查了两条直线交点坐标和二元一次方程组解的关系,二元一次方程组的求解,注意函数的图象和性质与代数关系的转化,数形结合思想的应用.2、D【解题分析】
移项、配方,即可得出选项.【题目详解】,,,.故选.【题目点拨】本题考查了解一元二次方程,能正确配方是解此题的关键.3、D【解题分析】解:∵S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,∴S甲2>S乙2>S丙2>S丁2,故选D.4、D【解题分析】
由平行四边形ABCD中,∠C=130°,可求得∠ABC的度数,又由BE平分∠ABC,即可求得∠CBE的度数,然后由平行线的性质,求得答案.【题目详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠ABC+∠C=180°,∠AEB=∠CBE,∵∠C=130°,∴∠ABC=180°-∠C=50°,∵BE平分∠ABC,∴∠CBE=∠ABC=25°,∴∠AEB=∠CBE=25°.故选D.【题目点拨】此题考查了平行四边形的性质,属于基础题,解答本题的关键是掌握平行四边形邻角互补的性质,难度一般.5、D【解题分析】
解:∵菱形ABCD中,E,F分别是AB,AC的中点,EF=2,∴BC=2EF=2×2=1.即AB=BC=CD=AD=1.故菱形的周长为1BC=1×1=2.故答案为2.【题目点拨】本题考查三角形中位线定理;菱形的性质.6、A【解题分析】
由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG=CD=AB,①正确;先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,③正确;由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;证出OG是△ABD的中位线,得出OG//AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形ODGF=S△ABF;④不正确;即可得出结果.【题目详解】解:四边形ABCD是菱形,在△ABG和△DEG中,∴△ABG≌△DEG(AAS),∴.AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,①正确;∵AB//CE,AB=DE,∴四边形ABDE是平行四边形,∴∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,③正确;∴AD⊥BE,由菱形的性质得:△ABG≌△BDG≌△DEG,在△ABG和△DCO中,∴△ABG≌△DCO∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,则②不正确。∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD,△ABF∽△OGF,∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;④不正确;故答案为:A.【题目点拨】本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;本题综合性强,难度较大.7、D【解题分析】
由点A在反比例函数的图象上,设出点A的坐标,结合勾股定理可以表现出OA2=AB2+OB2,再根据反比例函数图象上点的坐标特征可得出AB•OB的值,根据配方法求出(AB+OB)2,由此即可得出AB+OB的值,结合三角形的周长公式即可得出结论.【题目详解】解:∵点A在函数y=(x>0)的图象上,
∴设点A的坐标为(n,)(n>0).
在Rt△ABO中,∠ABO=90°,OA=1,
∴OA2=AB2+OB2,
又∵AB•OB=•n=1,
∴(AB+OB)2=AB2+OB2+2AB•OB=12+2×1=21,
∴AB+OB=2,或AB+OB=-2(舍去).
∴C△ABO=AB+OB+OA=2+1.
故答案为2+1.故选D.【题目点拨】本题考查了反比例函数图象上点的坐标特征、完全平方公式以及三角形的周长,解题的关键是求出AB+OB的值.本题属于基础题,难度不大,解决该题型题目时,巧妙的利用完全平方公式直接求出两直角边之和是关键.8、D【解题分析】
首先分别求出各个正多边形每个内角的度数,再结合镶嵌的条件作出判断.【题目详解】解:A项,正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴能密铺;B项,正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,∴能密铺;C项,正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,∴能密铺;D项,正五边形的每个内角是108°,正方形的每个内角是90°,∵90m+108n=360,m=4-6故选D.【题目点拨】本题考查了平面镶嵌的条件,解决此类问题,一般从正多边形的内角入手,围绕一个顶点处的所有内角之和是360°进行探究判断.9、D【解题分析】
根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【题目详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【题目点拨】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.10、B【解题分析】
按照配方法的步骤,先把常数项移到右侧,然后在两边同时加上一次项系数一半的平方,配方即可.【题目详解】x2+3x+1=0,x2+3x=-1,x2+3x+=-1+,,故选B.【题目点拨】本题考查了解一元二次方程——配方法,熟练掌握配方法的步骤以及要求是解题的关键.二、填空题(每小题3分,共24分)11、【解题分析】
先计算二次根式的乘法,然后进行化简,最后合并即可.【题目详解】原式.故答案为:.【题目点拨】本题考查了二次根式的混合运算,掌握各种知识点的运算法则是解答本题的关键.12、【解题分析】∵一次函数y=−2x+m的图象经过点P(−2,3),∴3=4+m,解得m=−1,∴y=−2x−1,∵当x=0时,y=−1,∴与y轴交点B(0,−1),∵当y=0时,x=−,∴与x轴交点A(−,0),∴△AOB的面积:×1×=.故答案为.点睛:首先根据待定系数法求得一次函数的解析式,然后计算出与x轴交点,与y轴交点的坐标,再利用三角形的面积公式计算出面积即可.13、-5【解题分析】
根据比例的性质,把写成的形式,然后代入已知数据进行计算即可得解.【题目详解】设由已知则故-5【题目点拨】本题主要考查了比例的基本性质。14、①③④【解题分析】
由“SAS”可证△BEC≌△AFC,再证△EFC是等边三角形,由外角的性质可证∠AFC=∠AGE;由点E在AB上运动,可得BE+DF≥EF;由等边三角形的性质可得△ECF面积的EC2,则当EC⊥AB时,△ECF的最小值为3;由等边三角形的性质和菱形的性质可求MN=BD﹣BM﹣DN=,由平行线分线段成比例可求EG=3FG,即可求解.【题目详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF=∠BCA=60°,∴△EFC是等边三角形,∴∠EFC=60°,∵∠AFC=∠AFE+∠EFC=60°+∠AFE,∠AGE=∠AFE+∠CAD=60°+∠AFE,∴∠AFC=∠AGE,故①正确;∵BE+DF=AF+DF=AD,EF=CF≤AC,∴BE+DF≥EF(当点E与点B重合时,BE+DF=EF),故②不正确;∵△ECF是等边三角形,∴△ECF面积的EC2,∴当EC⊥AB时,△ECF面积有最小值,此时,EC=2,△ECF面积的最小值为3,故③正确;如图,设AC与BD的交点为O,若AF=2,则FD=BE=AE=2,∴点E为AB中点,点F为AD中点,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∠ABO=∠ABC=30°,∴AO=AB=2,BO=AO=2,∴BD=4,∵△ABC是等边三角形,BE=AE=2,∴CE⊥AB,且∠ABO=30°,∴BE=EM=2,BM=2EM,∴BM=,同理可得DN=,∴MN=BD﹣BM﹣DN=,∴BM=MN=DN,故④正确;如图,过点E作EH∥AD,交AC于H,∵AF=BE=1,∴AE=3,∵EH∥AD∥BC,∴∠AEH=∠ABC=60°,∠AHE=∠ACB=60°,∴△AEH是等边三角形,∴EH=AE=3,∵AD∥EH,∴,∴EG=3FG,故⑤错误,故答案为:①③④【题目点拨】本题是四边形综合题,考查菱形的性质,等边三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,添加辅助线是解题的关键.15、【解题分析】
先根据三角形中位线定理求AC的长,再由菱形的性质求出OA,OB的长,根据勾股定理求出AB的长即可.【题目详解】∵E、F分别是AB、BC边的中点,∴EF是△ABC的中位线∵EF=,∴AC=2.∵四边形ABCD是菱形,BD=4,∴AC⊥BD,OA=AC=,OB=BD=2,∴.故答案为:.【题目点拨】此题考查菱形的性质、三角形中位线定理,解题关键在于熟练运用利用菱形的性质.16、甲【解题分析】
根据方差的意义即可求得答案.【题目详解】∵S甲2=1.25,S乙2=3,
∴S甲2<S乙2,
∴甲的成绩比较稳定,
故答案为:甲.【题目点拨】此题考查方差的意义,掌握方差的意义是解题的关键,即方差越大其数据波动越大,即成绩越不稳定.17、-7【解题分析】
将(x+3)(x+n)的形式转化为多项式,通过对比得出m、n的值,即可计算得出m+n的结果.【题目详解】(x+3)(x+n)=+(3+n)x+3n,对比+mx-15,得出:3n=﹣15,m=3+n,则:n=﹣5,m=﹣2.所以m+n=﹣2﹣5=﹣7.【题目点拨】本题考查了因式分解,解题关键在于通过对比两个多项式,得出m、n的值.18、1.【解题分析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.解:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=1°.故答案为1.三、解答题(共66分)19、(1)(2)(3)(4)1+1【解题分析】分析:(1)先将二次根式化为最简,然后再进行二次根式的除法及减法运算.(2)运用平方差及完全平方式解答即可.(3)将二次根式化为最简,然后再进行同类二次根式的合并即可.(4)先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)原式=(2)原式=(3)原式=2﹣2+﹣=﹣;(4)(+3﹣2)×2=(+)×2=1+1.点睛:本题考查了二次根式的计算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.20、(1)的值为8或12;(2)当时,的值最大,最大值为99【解题分析】
(1)根据面积可列出一元二次方程,即可求解;(2)根据题意列出关于x的不等式组,再利用二次函数的性质进行求解.【题目详解】解:(1),,的值为8或12(2)依题意得,得当时,随的增大而增大,所以,当时,的值最大,最大值为99【题目点拨】此题主要考查二次函数的应用,解题的关键是根据题意找到等量关系与不等关系进行求解.21、(1);(2)【解题分析】
(1)利用二次根式的性质化简,再合并同类项即可;(2)先对要求的式子进行配方,然后把x的值代入计算即可.【题目详解】(1)原式==(2)当时,====【题目点拨】本题考查了二次根式的化简求值,掌握混合运算的步骤和配方法的步骤是解题的关键.22、(1)这两年该企业投入科研经费的年平均增长率为20%;(2)2019年该企业投入科研经费8640万元.【解题分析】
(1)设这两年该企业投入科研经费的年平均增长率为x,根据2016年及2018年投入科研经费,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据2019年投入科研经费=2018年投入科研经费×(1+增长率),即可求出结论.【题目详解】解:(1)设这两年该企业投入科研经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:这两年该企业投入科研经费的年平均增长率为20%.(2)7200×(1+20%)=8640(万元).答:2019年该企业投入科研经费8640万元.【题目点拨】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据2019年投入科研经费=2018年投入科研经费×(1+增长率),列式计算.23、(1)点与之间的距离为:;(2).【解题分析】
(1)根据题意得出∠DFE=30°,则EF=2DE=16,进而利用勾股定理得出DF的长,进而得出答案;(2)直接利用勾股定理得出DM的长,进而得出MB=FM,求出答案.【题目详解】解:(1)如图,过点作于点,在中,,,,则,故,,∵,∴,在中,,即点与之间的距离为:;(2)在中,,∵,∴,又∵,是等腰直角三角形,∴,∴.【题目点拨】此题考查勾股定理,平行线的性质,解题关键在于作辅助线24、的最小值是1.【解题分析】
连接,,根据点与点关于对称和正方形的性质得到DN+MN的最小值即为线段BM的长.【题目详解】解:∵四边形是正方形,∴点关于的对称点是点.连接,,且交于点,与交于点,此时的值最小.∵,正方形的边长为8,∴,.由,知.又∵点与点关于对称,∴且平分.∴.∴.∴的最小值是1.【题目点拨】本题考查轴对称的应用和勾股定理的基本概念.解答本题的关键是读懂题意,知道根据正方形的性质得到DN+MN的最小值即为线段BM的长.25、(1)四边形OBDA是平行四边形,见解析;(2)①2+,②或或【解题分析】
(1)作射线OC,截取CD=OC,然后由对角线互相平分的四边形是平行四边形进行可得到四边形的形状;(2)①由直线EF恰好平分四边形OBDA的面积可知直线EF必过C,接
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课后服务增值项目管理制度与执行实操
- 驴友活动安全管理制度(3篇)
- 2026年矿井隐患排查治理和报告制度范文
- 企业信息化与数字化管理(标准版)
- 财务信息系统安全管理制度
- 办公室员工培训效果反馈制度
- 办公室绩效考核与奖惩制度
- 2026年某物业国企单位招聘外包制人员备考题库附答案详解
- 养老院绿化环境维护制度
- 安阳市新一中学招聘2026届部属公费师范生30人备考题库及1套参考答案详解
- 2026年中国航空传媒有限责任公司市场化人才招聘备考题库有答案详解
- 中枢系统脱髓鞘病护理
- 城镇排水管道非开挖修复工程可行性研究报告
- 江苏南京玄武区2025届高三第五次模拟考试英语试卷含解析
- 《审计实务》全套教学课件
- 跨境电子商务教案
- 中国的“爱经”(一)-《天地阴阳交⊥欢大乐赋》
- 广元市利州区何家坪石材厂饰面用灰岩矿矿山地质环境保护与土地复垦方案
- 保健按摩师初级试题
- 2021年度四川省专业技术人员继续教育公需科目(答案整合)
- 医疗废物处理方案
评论
0/150
提交评论