版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省鹰潭市名校2024届数学八下期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列事件是随机事件的是()A.购买一张福利彩票,中特等奖B.在一个标准大气压下,纯水加热到100℃,沸腾C.任意三角形的内角和为180°D.在一个仅装着白球和黑球的袋中摸出红球2.下列说法:(1)所有的等腰三角形都相似;(2)所有的等腰直角三角形都相似;(3)有一个角相等的两个等腰三角形相似(4)顶角相等的两个等腰三角形相似.其中正确的有()A.个 B.个 C.个 D.个3.下列说法正确的是()A.为了解我国中学生课外阅读的情况,应采取全面调查的方式B.一组数据1、2、5、5、5、3、3的中位数和众数都是5C.投掷一枚硬币100次,一定有50次“正面朝上”D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定4.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个 B.2个 C.3个 D.4个5.下列等式正确的是()A.+=+ B.﹣=C.++= D.+﹣=6.已知,则的关系是()A. B. C. D.7.如图,在正方形ABCD中,E为AB中点,连结DE,过点D作DF⊥DE交BC的延长线于点F,连结EF.若AE=1,则EF的值为()A.3 B.10 C.23 D.8.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10B.5,12,13C.9,40,41D.7,9,129.在平面直角坐标系中,点M(2019,–2019)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如图,将等边ABC向右平移得到DEF,其中点E与点C重合,连接BD,若AB=2,则线段BD的长为()A.2 B.4 C. D.211.“学习强国”的英语“Learningpower”中,字母“n”出现的频率是()A.1 B. C. D.212.如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则矩形ABCD的周长为()A.20 B.21 C.14 D.7二、填空题(每题4分,共24分)13.若一次函数y=kx+b的图象经过点P(﹣2,3),则2k﹣b的值为_____.14.已知一次函数y=(m﹣1)x﹣m+2的图象与y轴相交于y轴的正半轴上,则m的取值范围是_____.15.如图,在中,,点是边的中点,点在边上运动,若平分的周长时,则的长是_______.16.如图,在平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=_____度.17.若关于x的方程的解是负数,则a的取值范围是_____________。18.如图,在直角坐标系中,正方形、的顶点均在直线上,顶点在轴上,若点的坐标为,点的坐标为,那么点的坐标为____,点的坐标为__________.三、解答题(共78分)19.(8分)如图所示,点O是矩形ABCD对角线AC的中点,过点O作EFAC,交BC交于点E,交AD于点F,连接AE、CF,求证:四边形AECF是菱形.20.(8分)小明遇到这样一个问题:如图,点是中点,,求证:.小明通过探究发现,如图,过点作.交的延长线于点,再证明,使问题得到解决。(1)根据阅读材料回答:的条件是______(填“”“”“”“”或“”)(2)写出小明的证明过程;参考小明思考问题的方法,解答下列问题:(3)已知,中,是边上一点,,,分别在,上,连接.点是线段上点,连接并延长交于点,.如图,当时,探究的值,并说明理由:21.(8分)计算(结果可保留根号):(1)(2)22.(10分)如图,直线y=2x+6交x轴于A,交y轴于B.(1)直接写出A(,),B(,);(2)如图1,点E为直线y=x+2上一点,点F为直线y=x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.23.(10分)解方程:x2-3x=5x-124.(10分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.(1)求证:四边形ACED是平行四边形;(2)若AC=2,CE=4,求四边形ACEB的周长.25.(12分)某学校组织了“热爱宪法,捍卫宪法”的知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表,请你根据统计图表解答下列问题.(1)此次抽样调查的样本容量是_________;(2)写出表中的a=_____,b=______,c=________;(3)补全学生成绩分布直方图;(4)比赛按照分数由高到低共设置一、二、三等奖,若有25%的参赛学生能获得一等奖,则一等奖的分数线是多少?26.为了满足市场需求,某厂家生产A、B两种款式的环保购物袋,每天共生产5000个,两种购物袋的成本和售价如下表:成本(元/个)售价(元/个)22.433.6设每天生产A种购物袋x个,每天共获利y元.(1)求y与x的函数解析式;(2)如果该厂每天最多投入成本12000元,那么每天最多获利多少元?
参考答案一、选择题(每题4分,共48分)1、A【解题分析】选项A,购买一张福利彩票,中特等奖,是随机事件;选项B,在一个标准大气压下,纯水加热到100℃,沸腾,是必然事件;选项C,任意三角形的内角和为180°,是必然事件;选项D,在一个仅装着白球和黑球的袋中摸出红球,是不可能事件.故选A.2、B【解题分析】
利用“两角对应相等的三角形是相似三角形”直接逐一进行判断即可【题目详解】(1)所有的等腰三角形,不能判断对应的角相等.所以错误;(2)所有的等腰直角三角形的三个角分别为:90°,45°,45°,故利用有两角对应相等的三角形相似,即可判定所有的等边三角形都相似,所以正确;(3)中可能是以底角和一顶角相等,所以错误;(4)顶角相等且为等腰三角形,即底角也相等,是相似三角形,所以正确;故(2)(4)正确,选择B【题目点拨】本题考查相似三角形的判定,熟悉基础定理是解题关键3、D【解题分析】
解:为了解我国中学生课外阅读的情况,应采取抽样调查的方式,故选项A错误,把数据1、2、5、5、5、3、3从小到大排列1、2、3、3、5、5、5;所以中位数为:3;5出现的次数最多,所以众数是5,故选项B错误,投掷一枚硬币100次,可能有50次“正面朝上”,但不一定有50次“正面朝上”,故选项C错误,若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定,故选项D正确,故选D.【题目点拨】本题考查全面调查与抽样调查、中位数、众数、方差,解答本题的关键是明确它们各自的含义.4、A【解题分析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【题目详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【题目点拨】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.5、D【解题分析】
根据三角形法则即可判断.【题目详解】∵,∴,故选D.【题目点拨】本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则.6、D【解题分析】
根据a和b的值去计算各式是否正确即可.【题目详解】A.,错误;B.,错误;C.,错误;D.,正确;故答案为:D.【题目点拨】本题考查了实数的运算问题,掌握实数运算法则是解题的关键.7、B【解题分析】
根据题意可得AB=2,∠ADE=∠CDF,可证△ADE≌△DCF,可得CF=1,根据勾股定理可得EF的长.【题目详解】∵ABCD是正方形∴AB=BC=CD,∠A=∠B=∠DCB=∠ADC=90°∵DF⊥DE∴∠EDC+∠CDF=90°且∠ADE+∠EDC=90°∴∠ADE=∠CDF且AD=CD,∠A=∠DCF=90°∴△ADE≌△CDF∴AE=CF=1∵E是AB中点∴AB=BC=2∴BF=3在Rt△BEF中,EF=BE2故选B.【题目点拨】本题考查了正方形的性质,全等三角形的判定,勾股定理,关键熟练运用这些性质解决问题.8、D【解题分析】试题分析:A、∵62+82=102考点:勾股数.9、D【解题分析】
四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),再根据点M的坐标的符号,即可得出答案.【题目详解】解:∵M(2019,﹣2019),∴点M所在的象限是第四象限.故选D.【题目点拨】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10、D【解题分析】
过点D作DH⊥CF于H,由平移的性质可得△DEF是等边三角形,由等边三角形的性质可求CH=1,DH=,由勾股定理可求解.【题目详解】解:如图,过点D作DH⊥CF于H,∵将等边△ABC向右平移得到△DEF,∴△DEF是等边三角形,∴DF=CF=2,∠DFC=60°,∵DH⊥CF,∴∠FDH=30°,CH=HF=1,∴DH=HF=,BH=BC+CH=3,∴BD===2,故选:D.【题目点拨】本题主要考查勾股定理,平移的性质,等边三角形的性质,掌握这些性质是解题的关键.11、C【解题分析】
直接利用频率的定义分析得出答案.【题目详解】∵“学习强国”的英语“Learningpower”中,一共有13个字母,n有2个,
∴字母“n”出现的频率是:故选:C.【题目点拨】此题主要考查了频率的求法,正确把握定义是解题关键.12、C【解题分析】
分点E在AB段运动、点E在AD段运动时两种情况,分别求解即可.【题目详解】解:当点E在AB段运动时,y=BC×BE=BC•x,为一次函数,由图2知,AB=3,当点E在AD上运动时,y=×AB×BC,为常数,由图2知,AD=4,故矩形的周长为7×2=14,故选:C.【题目点拨】本题考查的是动点图象问题,涉及到一次函数、图形面积计算等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.二、填空题(每题4分,共24分)13、-3【解题分析】
把坐标带入解析式即可求出.【题目详解】y=kx+b的图象经过点P(﹣2,3),∴3=﹣2k+b,∴2k﹣b=﹣3,故答案为﹣3;【题目点拨】此题主要考查一次函数的性质,解题的关键是熟知一次函数的图像.14、m<2且m≠1【解题分析】
根据一次函数图象与系数的关系得到m-1≠0,-m+2>0,然后求出两个不等式的公共部分即可.【题目详解】解:根据题意得m-1≠0,-m+2>0,
解得m<2且m≠1.
故答案为m<2且m≠1.【题目点拨】本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).15、【解题分析】
延长CA至M,使AM=AB,连接BM,作AN⊥BM于N,由DE平分△ABC的周长,又CD=DB,得到ME=EC,根据中位线的性质可得DE=BM,再求出BM的长即可得到结论.【题目详解】解:延长CA至M,使AM=AB,连接BM,作AN⊥BM于N,
∵DE平分△ABC的周长,CD=DB,
∴ME=EC,
∴DE=BM,
∵∠BAC=60°,
∴∠BAM=120°,
∵AM=AB,AN⊥BM,
∴∠BAN=60°,BN=MN,∴∠ABN=30°,∴AN=AB=1,∴BN=,
∴BM=2,
∴DE=,
故答案为:.【题目点拨】本题考查了三角形的中位线的性质,等腰三角形的性质,含30°的直角三角形的性质以及勾股定理等知识点,作出辅助线综合运用基本性质进行推理是解题的关键.16、【解题分析】
由DB=DC,∠C=70°可以得到∠DBC=∠C=70°,又由AD∥BC推出∠ADB=∠DBC=∠C=70°,而∠AED=90°,根据直角三角形两锐角互余即可求得答案.由此可以求出∠DAE.【题目详解】∵DB=DC,∠C=70°,∴∠DBC=∠C=70°,在平行四边形ABCD中,∵AD∥BC,AE⊥BD,∴∠ADB=∠DBC=∠C=70°,∠AED=90°,∴∠DAE=-70°=20°.故填空为:20°.【题目点拨】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形两锐角互余的性质,熟练掌握相关性质与定理是解题的关键.17、【解题分析】
:把a看作常数,根据分式方程的解法求出x的表达式,再根据方程的解是负数列不等式组并求解即可:【题目详解】解:∵∴∵关于x的方程的解是负数∴∴解得【题目点拨】本题考查了分式方程的解与解不等式,把a看作常数求出x的表达式是解题的关键.18、【解题分析】
先求出点、的坐标,代入求出解析式,根据=1,(3,2)依次求出点点、、、的纵坐标及横坐标,得到规律即可得到答案.【题目详解】∵(1,1),(3,2),∴正方形的边长是1,正方形的边长是2,∴(0,1),(1,2),将点、的坐标代入得,解得,∴直线解析式是y=x+1,∵=1,(3,2),∴的纵坐标是,横坐标是,∴的纵坐标是,横坐标是,∴的纵坐标是,横坐标是,∴的纵坐标是,横坐标是,由此得到的纵坐标是,横坐标是,故答案为:(7,8),(,).【题目点拨】此题考查一次函数的定义,函数图象,直角坐标系中点的坐标规律,能根据图象求出点的坐标并总结规律用于解题是关键.三、解答题(共78分)19、答案见解析【解题分析】分析:由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论.详解:∵O是AC的中点,且EF⊥AC,
∴AF=CF,AE=CE,OA=OC,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠AFO=∠CEO,
在△AOF和△COE中,
∴△AOF≌△COE(AAS),
∴AF=CE,
∴AF=CF=CE=AE,
∴四边形AECF是菱形;点睛:此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识.注意证得△AOF≌△COE是关键.20、(1)AAS或ASA,(2)见详解.(3)2.【解题分析】
根据三角形判定的条件即可得到结果;由已作辅助线,可知,BF∥CD,再根据平行线的性质可得到内错角相等,又有对顶角相等和边相等,故可得证;连接BF,取BF的中点D,连接DM,DN,MP与CA的延长线相交于点G,由D,M,N分别是BF,BC,EF的中点,可知DM是△BCF的中位线,DN是△BEF的中位线,由中位线定理可得DM∥AC,DN∥BE且DN=BE.从而得到∠DMN=∠G,∠DNM=∠BPM,又因为.,可证得△DMN为等边三角形,所以DN=MN,等量代换后即可得到的值.【题目详解】解:(1)AAS或ASA(详解见(2))(2)证明:过点作.交的延长线于点,则∠F=∠D,∠FBE=∠C.∵点是中点,∴BE=EC.在△BEF和△CED中∴△BEF≌△CED(AAS).∴BF=CD.∵,∴,∴BF=AB,∴.(3)连接BF,取BF的中点D,连接DM,DN,MP与CA的延长线相交于点G,∵D,M,N分别是BF,BC,EF的中点,∴DM是△BCF的中位线,DN是△BEF的中位线,∴DM∥AC,DN∥BE且DN=BE.∴∠DMN=∠G,∠DNM=∠BPM,∵且,∴∠G=∠BPM=60°.∴∠DNM=∠DMN=60°.∴△DMN为等边三角形,∴MN=DN.∵DN=BE,∴=2.【题目点拨】本题主要考查了三角形的全等的判定,等边三角形的判定及性质,三角形的中位线定理及其应用,解题的关键是正确作出辅助线,构造三角形的中位线.21、(1);(2)【解题分析】
(1)先化为最简二次根式,然后合并同类项即可;(2)利用多项式乘法法则进行计算即可.【题目详解】解:(1)原式(2)原式【题目点拨】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.22、(1)﹣3,0,0,6;(2)E(5,7),F(2,1)或E(11,13),F(﹣14,﹣7);(3).【解题分析】
(1)利用待定系数法即可解决问题;(2)因为A,B,E,F为顶点的四边形是平行四边形,推出AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),再利用待定系数法求出m即可;(3)求出点M的坐标(用m表示),即可解决问题,利用特殊位置求出点M的坐标,可以解决点C移动过程中点M的运动路径长;【题目详解】解:(1)对于直线y=2x+6,令x=0,得到y=6,令y=0,得到x=﹣3,∴A(﹣3,0),B(0,6),故答案为﹣3,0,0,6;(2)∵A,B,E,F为顶点的四边形是平行四边形,∴AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),把F(m+3,m+8)代入y=x,得到m+8=(m+3),解得m=﹣13,∴E(﹣13,﹣11),F(﹣10,﹣5),把F(m﹣3,m﹣4)代入y=x中,m﹣4=(m﹣3),解得m=5,∴E(5,7),F(2,1),当AB为对角线时,设E(m,m+2),则F(m﹣3,6﹣m),把F(﹣m﹣3,4﹣m)代入y=x中,4﹣m=(﹣m﹣3),解得m=11,∴E(11,13),F(﹣14,﹣7).(3)∵C(m,n)在直线y=2x+6上,∴n=2m+6,∴C(m,2m+6),∵D(﹣7m,0),CM=MD,∴M(﹣3m,m+3),令x=﹣3m,y=m+3,∴y=﹣x+3,当点C与A重合时,m=﹣3,可得M(9,0),当点C与B重合时,m=0,可得M(0,3),∴点C移动过程中点M的运动路径长为:.【题目点拨】本题考查一次函数综合题、平行四边形的判定和性质、中点坐标公式、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置寻找点的运动轨迹,属于中考压轴题.23、x=4±【解题分析】
根据一元二次方程的解法即可求出答案.【题目详解】解:∵x2-3x=5x-1,∴x2-8x=-1∴x2-8x+16=15,∴(x-4)2=15,∴x=4±;【题目点拨】此题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题是属于基础题型.24、(1)详见解析;(1)10+1.【解题分析】
(1)先根据垂直于同一条直线的两直线平行,得AC∥DE,又CE∥AD,所以四边形ACED是平行四边形;(1)四边形ACED是平行四边形,可得DE=AC=1.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.【题目详解】(1)∵∠ACB=90°,DE⊥BC,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东定向招收公务员考试试题及答案
- 2026年广州工程技术职业学院单招职业技能考试题库附答案
- 2025年大学思想道德修养与法律基础期末考试题附参考答案(夺分金卷)
- 2026年毛概期末考试试题库(夺冠系列)
- 2026年书记员考试题库及答案【夺冠】
- 管理信息考试题及答案
- 2026年国际商务英语一级考试练习题及参考答案【考试直接用】
- 2026年政府采购培训试题100道及参考答案【达标题】
- 2026年大学生心理健康教育考试题库带答案(完整版)
- 2026年低压电工操作证理论全国考试题库含答案【综合卷】
- 不带薪实习合同范例
- 山东济南历年中考语文现代文之记叙文阅读14篇(截至2024年)
- 安全生产新年第一课
- 2023-2024学年广东省广州市白云区六年级(上)期末数学试卷
- 产房护士长工作总结
- 生命伦理学:生命医学科技与伦理智慧树知到期末考试答案章节答案2024年山东大学
- JJG 4-2015钢卷尺行业标准
- 全球胜任力英语教程 课件 Unit 2 saying no to poverty
- 个人投资收款收据
- 太阳能路灯可行性研究报告
- GB/T 7044-2013色素炭黑
评论
0/150
提交评论