山东省禹城市综合高中2023年高一数学第一学期期末教学质量检测模拟试题含解析_第1页
山东省禹城市综合高中2023年高一数学第一学期期末教学质量检测模拟试题含解析_第2页
山东省禹城市综合高中2023年高一数学第一学期期末教学质量检测模拟试题含解析_第3页
山东省禹城市综合高中2023年高一数学第一学期期末教学质量检测模拟试题含解析_第4页
山东省禹城市综合高中2023年高一数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省禹城市综合高中2023年高一数学第一学期期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知集合,则=A. B.C. D.2.已知函数的最小正周期,且是函数的一条对称轴,是函数的一个对称中心,则函数在上的取值范围是()A. B.C. D.3.已知函数,若函数有两个不同的零点,则实数的取值范围是()A. B.C. D.4.在人类用智慧架设的无数座从已知通向未知的金桥中,用二分法求方程的近似解是其中璀璨的一座.已知为锐角的内角,满足,则()A. B.C. D.5.已知,则、、的大小关系为()A. B.C. D.6.国家质量监督检验检疫局发布的相关规定指出,饮酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于,小于的驾驶行为;醉酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于的驾驶行为.一般的,成年人喝一瓶啤酒后,酒精含量在血液中的变化规律的“散点图”如图所示,且图中的函数模型为:,假设某成年人喝一瓶啤酒后至少经过小时才可以驾车,则的值为()(参考数据:,)A.5 B.6C.7 D.87.已知全集,,,则等于()A. B.C. D.8.由直线上的点向圆引切线,则切线长的最小值为()A. B.C. D.9.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=010.有位同学家开了个小卖部,他为了研究气温对热饮销售的影响,经过统计得到一天所卖的热饮杯数(y)与当天气温(x℃)之间的线性关系,其回归方程为=-2.35x+147.77.如果某天气温为2℃,则该小卖部大约能卖出热饮的杯数是A.140 B.143C.152 D.156二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若函数过点,则的解集为___________.12.已知幂函数f(x)=xa的图象经过点(8,2),则f(27)的值为____________13.若是第三象限的角,则是第________象限角;14.在内,使成立的x的取值范围是____________15.已知,则函数的最大值为___________,最小值为___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数,实数且(1)设,判断函数在上的单调性,并说明理由;(2)设且时,的定义域和值域都是,求的最大值17.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当时(尾/立方米)时,的值为2(千克/年);当时,是的一次函数;当(尾/立方米)时,因缺氧等原因,的值为0(千克/年).(1)当时,求函数的表达式;(2)当为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值.18.已知直线经过点(1)若点在直线上,求直线的方程;(2)若直线与直线平行,求直线的方程19.已知的一条内角平分线的方程为,其中,(1)求顶点的坐标;(2)求的面积20.已知集合,.(1)当时,求;(2)在①,②,③这三个条件中任选一个,补充在(2)问中的横线上,并求解.若___________,求实数的取值范围.(注:如果选择多个条件分别解答,按第一个解答计分)21.已知函数是定义在上的奇函数,且时,.(1)求函数的解析式;(2)若任意恒成立,求实数的取值范围.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】由题意,所以.故选B考点:集合的运算2、B【解析】依题意求出的解析式,再根据x的取值范围,求出的范围,再根据正弦函数的性质计算可得.【详解】函数的最小正周期,∴,解得:,由于是函数的一条对称轴,且为的一个对称中心,∴,(),则,(),则,又∵,,由于,∴,故,∵,∴,∴,∴.故选:B3、A【解析】将函数零点个数问题转化为图象交点个数问题,再数形结合得解.【详解】函数有两个不同的零点,即方程有两个不同的根,从而函数的图象和函数的图象有两个不同的交点,由可知,当时,函数是周期为1的函数,如图,在同一直角坐标系中作出函数的图象和函数的图象,数形结合可得,当即时,两函数图象有两个不同的交点,故函数有两个不同的零点.故选:A.4、C【解析】设设,则在单调递增,再利用零点存在定理即可判断函数的零点所在的区间,也即是方程的根所在的区间.【详解】因为为锐角的内角,满足,设,则在单调递增,,在取,得,,因为,所以的零点位于区间,即满足的角,故选:C【点睛】关键点点睛:本题解题的关键点是令,根据零点存在定理判断函数的零点所在的区间.5、A【解析】借助中间量比较大小即可.【详解】解:因为,所以.故选:A6、B【解析】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以,根据题意列不等式,解不等式结合即可求解.【详解】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以所求,由,即,所以,即,所以,因为,所以最小为,所以至少经过小时才可以驾车,故选:B.7、D【解析】利用补集和并集的定义即可得解.【详解】,,,,,.故选:D.【点睛】本题主要考查集合的基本运算,熟练掌握补集和并集的定义是解决本题的关键,属于基础题.8、B【解析】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,﹣2)到直线的距离m,求出m,由勾股定理可求切线长的最小值【详解】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,﹣2)到直线的距离m,由点到直线的距离公式得m==4,由勾股定理求得切线长的最小值为=故选B【点睛】本题考查直线和圆的位置关系,点到直线的距离公式、勾股定理的应用.解题的关键是理解要使切线长最小,必须直线y=x+2上的点到圆心的距离最小9、A【解析】设出直线方程,利用待定系数法得到结果.【详解】设与直线平行的直线方程为,将点代入直线方程可得,解得则所求直线方程为.故A正确【点睛】本题主要考查两直线的平行问题,属容易题.两直线平行倾斜角相等,所以斜率相等或均不存在.所以与直线平行的直线方程可设为10、B【解析】一个热饮杯数与当天气温之际的线性关系,其回归方程某天气温为时,即则该小卖部大约能卖出热饮的杯数是故选点睛:本题主要考查的知识点是线性回归方程的应用,即根据所给的或者是做出的线性回归方程,预报的值,这是一些解答题二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】由函数过点可求得参数a的值,进而解对数不等式即可解决.详解】由函数过点可得,,则,即,此时由可得即故答案为:12、3【解析】根据幂函数f(x)=xa的图象经过点(8,2)求出a的值,再求f(27)的值.【详解】幂函数f(x)=xa的图象经过点(8,2),则8α=2,∴α=,∴f(x)=,∴f(27)==3.故答案为3【点睛】本题主要考查幂函数的概念和解析式的求法,考查幂函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.13、一或三【解析】根据的范围求得的范围,从而确定正确答案.【详解】依题意,,,所以当为奇数时,在第三象限;当为偶数时,在第一象限.故答案:一或三14、【解析】根据题意在同一个坐标系中画出在内的函数图像,由图求出不等式的解集【详解】解:在同一个坐标系中画出在内的函数图像,如图所示,则使成立的x的取值范围是,故答案为:15、①.②.【解析】利用对勾函数的单调性直接计算函数的最大值和最小值作答.【详解】因函数在上单调递增,在上单调递减,当时,函数在上单调递增,在上单调递减,即有当时,,而当时,,当时,,则,所以函数的最大值为,最小值为.故答案为:;三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)在上单调递增,理由见解析(2)【解析】(1)由定义法直接证明可得;(2)由题知是方程的不相等的两个正数根,然后整理成一元二次方程,由判别式和韦达定理列不等式组求解可得a的范围,再用韦达定理表示出所求,然后可解.【小问1详解】设,则,,,,故在上单调递增;【小问2详解】由(1)可得时,在上单调递增,的定义域和值域都是,,则是方程的不相等的两个正数根,即有两个不相等的正数根,则,解得,,,时,最大值为;17、(1)(2),鱼的年生长量可以达到最大值12.5【解析】(1)根据题意得建立分段函数模型求解即可;(2)根据题意,结合(1)建立一元二次函数模型求解即可.【小问1详解】解:(1)依题意,当时,当时,是的一次函数,假设且,,代入得:,解得.所以【小问2详解】解:当时,,当时,所以当时,取得最大值因为所以时,鱼的年生长量可以达到最大值12.5.18、(1)(2)【解析】(1)利用两点式求得直线的方程.(2)利用点斜式求得直线的方程.【小问1详解】∵直线经过点,且点在直线上,∴由两点式方程得,即,∴直线的方程为【小问2详解】若直线与直线平行,则直线的斜率为,∵直线经过点,∴直线的方程为,即19、(1)点的坐标为.(2)24【解析】(1)先根据中点坐标公式以及直线垂直斜率的积等于列方程组求出点关于直线的对称点的坐标,根据两点式或点斜式可得直线的方程,与角平分线的方程联立可得顶点的坐标;(2)根据两点间的距离公式可得的值,再利用点到直线距离公式可得到直线:的距离,由三角形面积公式可得结果.试题解析:(1)由题意可得,点关于直线的对称点在直线上,则有解得,,即,由和,得直线的方程为,由得顶点的坐标为(2),到直线:的距离,故的面积为20、(1)(2)选①或.选②③或.【解析】(1)分别求出两个集合,再根据并集的运算即可得解;(2)选①,根据,得,分和两种情况讨论即可得解.选②,根据,得,分和两种情况讨论即可得解.选③,根据,分和两种情况讨论即可得解.【小问1详解】解:当时,,,所以;【小问2详解】解:选①,因为,所以,当时,,解得;当时,因为,所以,解得,综上所述,或.选②,因为,所以,或,当时,,解得,符合题意;当时,因为,所以或,解得或,综上所述,或.选③,当时,,解得,符合题意;当时,因为,所以或,解得或,综上所述,或.21、(1);

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论