青岛市重点中学2023-2024学年高一上数学期末学业水平测试模拟试题含解析_第1页
青岛市重点中学2023-2024学年高一上数学期末学业水平测试模拟试题含解析_第2页
青岛市重点中学2023-2024学年高一上数学期末学业水平测试模拟试题含解析_第3页
青岛市重点中学2023-2024学年高一上数学期末学业水平测试模拟试题含解析_第4页
青岛市重点中学2023-2024学年高一上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青岛市重点中学2023-2024学年高一上数学期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.设点关于坐标原点的对称点是B,则等于()A.4 B.C. D.22.函数f(x)=A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)3.已知向量,,若,则()A. B.C.2 D.34.如图是一算法的程序框图,若输出结果为,则在判断框中应填入的条件是()A. B.C. D.5.已知向量,,则与的夹角为A. B.C. D.6.要得到的图象,需要将函数的图象A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位7.下列函数中,既是奇函数又是定义域内的增函数为()A. B.C. D.8.已知,,,则下列判断正确的是()A. B.C. D.9.已知函数是上的增函数(其中且),则实数的取值范围为()A. B.C. D.10.为了得到函数的图象,只需将函数上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.幂函数的图象过点,则___________.12.设b>0,二次函数y=ax2+bx+a2-1的图象为下列之一,则a的值为______________13.化简求值(1)化简(2)已知:,求值14.如图,矩形的三个顶点分别在函数,,的图像上,且矩形的边分别平行于两坐标轴.若点的纵坐标为2,则点的坐标为______.15.已知a∈R,不等式的解集为P,且-1∈P,则a的取值范围是____________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数f(x)=(a,b为常数),且方程f(x)-x+12=0有两个零点分别为3和4.求函数f(x)的解析式17.如图,在四棱锥P-ABCD中,ABCD为平行四边形,AB⊥AC,PA⊥平面ABCD,且PA=AB=2,AC=1,点E是PD的中点.(1)求证:PB//平面AEC;(2)求D到平面AEC的距离.18.已知.(1)若为第四象限角且,求的值;(2)令函数,,求函数的递增区间.19.已知,,(1)求实数a、b的值,并确定的解析式;(2)试用定义证明在内单调递减20.已知圆,直线过点.(1)若直线与圆相切,求直线的方程;(2)若直线与圆交于两点,当的面积最大时,求直线的方程.21.已知关于的函数.(1)若函数是偶函数,求实数的值;(2)当时,对任意,记的最小值为,的最大值为,且,求实数的值.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】求出点关于坐标原点的对称点是B,再利用两点之间的距离即可求得结果.【详解】点关于坐标原点的对称点是故选:A2、C【解析】,所以零点在区间(0,1)上考点:零点存在性定理3、A【解析】先计算的坐标,再利用可得,即可求解.【详解】,因为,所以,解得:,故选:A4、B【解析】依次执行循坏结构,验证输出结果即可.【详解】根据程序框图,运行结构如下:第一次循环,,第二次循环,,第三次循环,,此时退出循环,故应填:.故选:B.5、C【解析】利用夹角公式进行计算【详解】由条件可知,,,所以,故与的夹角为故选【点睛】本题考查了运用平面向量数量积运算求解向量夹角问题,熟记公式准确计算是关键,属于基础题6、D【解析】由“左加右减上加下减”的原则可确定函数到的路线,进行平移变换,推出结果【详解】解:将函数向右平移个单位,即可得到的图象,即的图象;故选:【点睛】本题主要考查三角函数的平移.三角函数的平移原则为“左加右减上加下减”.注意的系数,属于基础题7、D【解析】根据初等函数的性质及奇函数的定义结合反例逐项判断后可得正确的选项.【详解】对于A,的定义域为,而,但,故在定义域上不是增函数,故A错误.对于B,的定义域为,它不关于原点对称,故该函数不是奇函数,故B错误.对于C,因为时,,故在定义域上不是增函数,故C错误.对于D,因为为幂函数且幂指数为3,故其定义域为R,且为增函数,而,故为奇函数,符合.故选:D.8、C【解析】对数函数的单调性可比较、与的大小关系,由此可得出结论.【详解】,即.故选:C.9、D【解析】利用对数函数、一次函数的性质判断的初步取值范围,再由整体的单调性建立不等式,构造函数,利用函数的单调性求解不等式,从求得的取值范围.【详解】由题意必有,可得,且,整理为.令由换底公式有,由函数为增函数,可得函数为增函数,注意到,所以由,得,即,实数a的取值范围为故选:D.10、A【解析】根据函数图象的平移变换即可得到答案.【详解】选项A:把函数上所有的点向左平移个单位长度可得的图象,选项A正确;选项B:把函数上所有的点向右平移个单位长度可得的图象,选项B错误;选项C:把函数上所有的点向左平移个单位长度可得的图象,选项C错误;选项D:把函数上所有的点向右平移个单位长度可得的图象,选项D错误;故选:A.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】将点的坐标代入解析式可解得结果.【详解】因为幂函数的图象过点,所以,解得.故答案为:12、-1【解析】根据题中条件可先排除①,②两个图象,然后根据③,④两个图象都经过原点可求出a的两个值,再根据二次函数图象的开口方向就可确定a的值.【详解】∵b>0∴二次函数的对称轴不能为y轴,∴可排除掉①,②两个图象∵③,④两个图象都经过原点,∴a2﹣1=0,∴a=±1∵当a=1时,二次函数图象的开口向上,对称轴在y轴左方,∴第四个图象也不对,∴a=﹣1,故答案为:-1【点睛】本题考查了二次函数的图象和性质,做题时注意题中条件的利用,合理地利用排除法解决选择题13、(1)(2)【解析】(1)利用诱导公式化简即可;(2)先进行弦化切,把代入即可求解.【小问1详解】.【小问2详解】因为,所以.所以.又,所以.14、【解析】先利用已知求出的值,再求点D的坐标.【详解】由图像可知,点在函数的图像上,所以,即.因为点在函数的图像上,所以,.因为点在函数的图像上,所以.又因为,,所以点的坐标为.故答案为【点睛】本题主要考查指数、对数和幂函数的图像和性质,意在考查学生对这些知识的理解掌握水平.15、【解析】把代入不等式即可求解.【详解】因为,故,解得:,所以a的取值范围是.故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、【解析】将3和4分别代入方程得,解得,进而可得.试题解析:将3和4分别代入方程-x+12=0得解得所以已知零点求函数解析式的一般步骤为:

将零点代入函数得到方程;

求出方程中的未知参数;

将参数代入即可得其解析式.17、(1)证明见解析(2)【解析】(1)连接交于,连接,则可得,再由E是PD的中点,则可利用三角形中位线定理可得∥,然后利用线面平行的判定定理可证得结论;(2)由已知条件可证明,都为直角三角形,所以可求出,从而可求出的面积,然后利用等体积法可求出D到平面AEC的距离.【小问1详解】连接交于,连接,因为四边形为平行四边形,所以,因为点E是PD的中点,所以∥,因为平面,平面,所以∥平面,【小问2详解】因为∥,,所以,,因为平面,平面,所以,因为,、平面,所以平面,因为平面,所以,在直角中,,同理,在等腰中,,取的中点,连接,则∥,,因平面,所以平面,,设D到平面AEC的距离为,由,得,所以,得,所以D到平面AEC距离为18、(1);(2).【解析】(1)先利用诱导公式化简,再利用同角三角函数的基本关系求解,代入即得结果;(2)利用两角和的正弦公式的逆应用化简函数,再利用整体代入法,结合范围得到递增区间即可.【详解】解:(1),,,为第四象限角,;(2)由(1)知,故,令,得,又,函数的递增区间为.19、(1),;(2)证明见解析【解析】(1)根据条件解出即可;(2)利用单调性的定义证明即可.【小问1详解】由,,得解得,,∴【小问2详解】设,则∵,,∴,即,∴在上单调递减20、(1)或;(2)或.【解析】(1)分直线l的斜率不存在与直线l的斜率存在两种讨论,根据直线l与圆M相切进行计算,可得直线的方程;(2)设直线l的方程为,圆心到直线l的距离为d,可得的长,由的面积最大,可得,可得k的值,可得直线的方程.【详解】解:(1)当直线l的斜率不存在时,直线l的方程为,此时直线l与圆M相切,所以符合题意,当直线l的斜率存在时,设l的斜率为k,则直线l的方程为,即,因为直线l与圆M相切,所以圆心到直线的距离等于圆的半径,即,解得,即直线l的方程为;综上,直线l的方程为或,(2)因为直线l与圆M交于P.Q两点,所以直线l斜率存在,可设直线l的方程为,圆心到直线l的距离为d,则从而的面积为·当时,的面积最大,因为,所以,解得或,故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论