版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省沧州市华北油田油建中学2022-2023学年高二数学理下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知f(x)在x=-3时取得极值,则a等于()A.2
B.3
C.4
D.5参考答案:D2.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生(
)(A)30人,30人,30人
(B)30人,45人,15人(C)20人,30人,40人
(D)30人,50人,10人参考答案:B3.命题“,总有”的否定是
A.“,总有”
B.“,总有”
C.“,使得”
D.“,使得”参考答案:D4.若函数f(x)=2x2﹣lnx在其定义域内的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围是()A.[1,+∞) B.[1,) C.[1,2) D.[,2)参考答案:B【考点】6B:利用导数研究函数的单调性.【分析】先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解方程fˊ(x)=0,使方程的解在定义域内的一个子区间(k﹣1,k+1)内,建立不等关系,解之即可.【解答】解:因为f(x)定义域为(0,+∞),又,由f'(x)=0,得.当x∈(0,)时,f'(x)<0,当x∈(,+∞)时,f'(x)>0据题意,,解得.故选B.5.已知f(x)是定义在R上的函数,满足,,当时,,则函数的最大值为(
)A. B. C. D.参考答案:A【分析】由题意可知,函数是以为周期的周期函数,且为奇函数,求出函数在区间上的最大值即可作为函数在上的最大值.【详解】,,则函数为奇函数,则.由,所以,函数是以为周期的周期函数,且,又,所以,.当时,,那么当时,,所以,函数在区间上的值域为,因此,函数的最大值为,故选:A.【点睛】本题考查函数的奇偶性、周期性与函数的最值,解题时要充分注意函数的最值与单调性、周期性之间的关系,考查分析问题和解决问题的能力,属于中等题.6.在极坐标系中,由三条直线,,围成的图形的面积为(
)A. B. C. D.参考答案:B【分析】求出直线与直线交点的极坐标,直线与直线交点的极坐标,然后利用三角形的面积公式可得出结果.【详解】设直线与直线交点的极坐标,则,得.设直线与直线交点的极坐标,则,即,得.因此,三条直线所围成的三角形的面积为,故选:B.【点睛】本题考查极坐标系中三角形面积的计算,主要确定出交点的极坐标,并利用三角形的面积公式进行计算,考查运算求解能力,属于中等题.7.某技术学院安排5个班到3个工厂实习,每个班去一个工厂,每个工厂至少安排一个班,则不同的安排方法共有(
)A.60种 B.90种 C.150种 D.240种参考答案:C【分析】先将5人分成3组,3,1,1和2,2,1两种分法,再分配,应用排列组合公式列式求解即可.【详解】将5个班分成3组,有两类方法:(1)3,1,1,有种;(2)2,2,1,有种.所以不同的安排方法共有种.故选:C.【点睛】本题主要考查了排列组合的实际应用问题:分组分配,注意此类问题一般要先分组再分配(即为排列),属于基础题.8.设双曲线的右顶点为,为双曲线上的一个动点(不是顶点),从点引双曲线的两条渐近线的平行线,与直线分别交于两点,其中为坐标原点,则与的大小关系为(
)A.
B.
C.
D.不确定参考答案:C9.如右下图:已知点O为正方体ABCD-A1B1C1D1的底面ABCD的中心,则下列结论正确的是()A、直线OA1⊥直线ADB、直线OA1∥直线BD1C、直线OA1⊥平面AB1C1D、直线OA1∥平面CB1D1参考答案:D10.已知抛物线,△ABC的三个顶点都在抛物线上,O为坐标原点,设△ABC三条边AB,BC,AC的中点分别为M,N,Q,且M,N,Q的纵坐标分别为.若直线AB,BC,AC都存在斜率且它们的斜率之和为-1,则的值为(
)A.-1009
B.
C.
D.-2018参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.设O是原点,向量对应的复数分别为那么,向量对应的复数是
.参考答案:12.某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元。要使一年的总运费与总存储费用之和最小,则x的值是
参考答案:30由题意可得:一年的总运费与总存储费用之和(万元).当且仅当,即时取等号13.在不等式组所表示的平面区域内所有的格点(横、纵坐标均为整数的点称为格点)中任取3个点,则该3点恰能成为一个三角形的三个顶点的概率为
▲.参考答案:略14.如图,这是一个正六边形的序列,则第(n)个图形的边数为
参考答案:因而每个图形的边数构成一个首项为6,公差为5的等差数列,因而第(n)个图形的边数为.
15.下表给出了一个“三角形数阵”:
ks*5u
依照表中数的分布规律,可猜得第6行第4个数是.参考答案:略16.侧棱与底面垂直的三棱柱A1B1C1﹣ABC的所有棱长均为2,则三棱锥B﹣AB1C1的体积为.参考答案:【考点】棱柱、棱锥、棱台的体积.【分析】先求出,AA1=2,由此能求出三棱锥B﹣AB1C1的体积.【解答】解:∵侧棱与底面垂直的三棱柱A1B1C1﹣ABC的所有棱长均为2,∴==,AA1=2,∴三棱锥B﹣AB1C1的体积为:V==.故答案为:.【点评】本题考查三棱锥的体积的求不地,是基础题,解题时要认真审题,注意空间思维能力的培养.17.设为椭圆的焦点,过且垂直于轴的直线与椭圆交于A,B两点,若△为锐角三角形,则该椭圆离心率的取值范围是 参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数.(1)求的单调区间;(2)设函数,若当时,恒成立,求a的取值范围.参考答案:(1)在上是增函数,在上是减函数;(2)【分析】(1)求出定义域、,分,两种情况进行讨论,通过解不等式,可得单调区间;(2)令,则,则问题转化为当时,恒成立,进而转化求函数的最大值问题.求导数,根据极值点与区间的关系进行讨论可求得函数的最大值;【详解】(1)解:因为,其中.所以,当时,,所以在上是增函数.当时,令,得,所以在上是增函数,在上是减函数.(2)令,则,根据题意,当时,恒成立所以,①当时,时,恒成立.所以在上是增函数,且时,,所以当时,不会恒成立,故不符题意.②当时,时,恒成立.所以在上是增函数,且,时,,所以当时,不会恒成立,故不符题意.③当时,时,恒有,故在上是减函数,于是“对任意都成立”的充要条件是,即,解得,故.综上所述,的取值范围是.【点睛】本题考查利用导数研究函数的单调性、函数的最值,考查恒成立问题,考查分类讨论思想,考查学生综合运用知识解决问题的能力.19.设p:对任意的x∈R,不等式x2﹣ax+a>0恒成立,q:关于x的不等式组的解集非空,如果“p∧q”为假命题,“p∨q”为真命题,求实数a的取值范围.参考答案:【考点】复合命题的真假.【分析】分别求出p,q成立的x的范围,结合p,q一真一假,求出a的范围即可.【解答】解:由已知要使p正确,则必有△=(﹣a)2﹣4a<0,解得:0<a<4,由≥0,解得:x≤﹣3或x>2,∴要使q正确,则a>2,由“p∧q”为假命题,“p∨q”为真命题,得p和q有且只有一个正确,若p真q假,则0<a≤2,若p假q真,则a≥4,故a∈(0,2]∪[4,+∞).20.已知M(m,n)为圆C:x2+y2﹣4x﹣14y+45=0上任意一点.(1)求m+2n的最大值;(2)求的最大值和最小值.参考答案:【考点】JE:直线和圆的方程的应用;J9:直线与圆的位置关系.【分析】(1)求出圆心C(2,7),半径r,设m+2n=t,将m+2n=t看成直线方程,利用圆心到直线的距离d=≤2,即可得到所求的最大值.(2)记点Q(﹣2,3),表示直线MQ的斜率k,直线MQ的方程kx﹣y+2k+3=0.直线MQ与圆C有公共点,列出不等式,求解即可.可【解答】解:(1)因为x2+y2﹣4x﹣14y+45=0的圆心C(2,7),半径r=2,设m+2n=t,将m+2n=t看成直线方程,因为该直线与圆有公共点,所以圆心到直线的距离d=≤2,解上式得,16﹣2≤t≤16+2,所以所求的最大值为16+2.(2)记点Q(﹣2,3),因为表示直线MQ的斜率k,所以直线MQ的方程为y﹣3=k(x+2),即kx﹣y+2k+3=0.由直线MQ与圆C有公共点,得≤2.可得2﹣≤k≤2+,所以的最大值为2+,最小值为2﹣.21.(本小题12分)已知定点,点在圆上运动,的平分线交于点,其中为坐标原点,求点的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB 46859-2025儿童手表安全技术要求
- 全国农药安全培训课件
- 全员安全培训责任制度课件
- 脚本问答话术
- 职业生涯通道规划方案
- 干燥间消防安全制度
- 校招销售面试实战技巧
- 英语专业专科就业前景
- 安全生产节日通知讲解
- 两新组织考试试卷及答案
- 冀教版(2024)三年级上册《称量物体》单元测试(含解析)
- 数学-湖南长郡中学、杭州二中、南师附中三校2025届高三4月联考试题+答案
- 医学三维可视化与虚拟现实技术:革新肝癌腹腔镜手术的探索与实践
- 人类房子的演变过程
- 线路交维管理办法
- 模具质量全流程管控体系
- 河南2024级高中会考数学试卷
- 美育视域下先秦儒家乐教思想对舞蹈教育的当代价值研究
- 运输企业隐患排查奖惩制度
- 网络传播法规(自考14339)复习题库(含答案)
- 房屋继承家庭协议书
评论
0/150
提交评论