江西省赣州市2024届高三下学期年3月摸底考试数学试题_第1页
江西省赣州市2024届高三下学期年3月摸底考试数学试题_第2页
江西省赣州市2024届高三下学期年3月摸底考试数学试题_第3页
江西省赣州市2024届高三下学期年3月摸底考试数学试题_第4页
江西省赣州市2024届高三下学期年3月摸底考试数学试题_第5页
已阅读5页,还剩5页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

赣州市2024年高三年级摸底考试数学试卷2024年3月本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时长120分钟第I卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则()A.B.C.D.2.已知为虚数单位.,则()A.1B.C.2D.43.在中,,则()A.B.C.D.4.在棱长为1的正方体中,为棱的中点,过且平行于平面的平面截正方体所得截面面积为()A.B.C.D.5.在平行四边形中,,则()A.16B.14C.12D.106.若一组样本数据的方差为,则样本数据的方差为()A.1B.2C.2.5D.7.已知,则()A.B.C.D.8.在边长为4的正方体中,点是的中点,点是侧面内的动点(含四条边),且,则的轨迹长度为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.9.已知等比数列的前项和为,则()A.B.C.数列为单调数列D.数列为单调数列10.已知函数,则()A.是的一个周期B.的图象关于原点对称C.的图象过点D.为上的单调函数11.曲线是平面内与两个定点的距离的积等于的点的轨迹,则()A.曲线关于坐标轴对称B.周长的最小值为C.到轴距离的最大值为D.到原点距离的最小值为第Ⅱ卷(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12.求值:__________.13.展开式中的常数项为__________.14.已知是抛物线上异于顶点的点,在处的切线分别交轴、轴于点,过作的垂线分别交轴、轴于点,分别记与的面积为,则的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,在四棱锥中,底面为直角梯形,平面为侧棱的中点.(1)求点到平面的距离:(2)求二面角的正切值.16.(15分)某人准备应聘甲、乙两家公司的高级工程师,两家公司应聘程序都是:应聘者先进行三项专业技能测试,专业技能测试通过后进入面试.已知该应聘者应聘甲公司,每项专业技能测试通过的概率均为,该应聘者应聘乙公司,三项专业技能测试通过的概率依次为,,m,其中,技能测试是否通过相互独立.(1)若.求该应聘者应聘乙公司三项专业技能测试恰好通过两项的概率;(2)已知甲、乙两家公司的招聘在同一时间进行,该应聘者只能应聘其中一家,应聘者以专业技能测试通过项目数的数学期望为决策依据,若该应聘者更有可能通过乙公司的技能测试,求m的取值范围.17.(15分)己知椭圆过点,椭圆的右焦点与点所在直线的斜率为.(1)求椭圆的方程;(2)若过的直线与椭圆交于两点.点.直线分别交椭圆于点,直线的斜率是否为定值?若是,求出该定值,若不是,请说明理由.18.(17分)已知函数.(1)求的单调区间,(2)已如.若函数有唯一的零点.证明,.19.(17分)设数列.如果对小于的每个正整数都有.则称是数列的一个“时刻”.记是数列的所有“时刻”组成的集合,的元素个数记为.(1)对数列,写出的所有元素;(2)数列满足,若.求数列的种数.(3)证明:若数列满足,则.赣州市2024年高三年级摸底考试数学(理科)参考答案一、单选题(共40分)题号12345678答案ABBAACDD二、多选题(共18分)题号91011答案BCABCABD三、填空题(共15分)12.13.63014.1四、解答题(共77分)15.解:(1)由平面,可得令点到平面的距离为,则由,可得则由,可得:由平面,可得,则则,即点到平面的距离为(2)设为的中点,过作交于,连结是的中点,平面平面,为二面角的一个平面角又,且,可得则即二面角的正切值为说明:也可以利用向量法!16.解:(1)记“该应聘者应聘乙公司三项专业技能测试恰好通过两项”为事件由题设(2)分别记“该应聘者应聘甲、乙公司三项专业技能测试中通过的项目数为”由题设知:所以的所有可能取值为,,,故的分布列为0123从而由得解得17.解:(1)由题意可设椭圆的半焦距为,且椭圆的右焦点为由题意得:解得所以的方程为:(2)设的方程为,设,则直线的方程为由可得结合,可得可得,解得代入,解得同理可得故,故直线的斜率是定值,且定值为218.解:(1)当时,为增函数又当时,单调递减;当时,单调递增.的减区间为,增区间为(2)由(1)可知在单调递增,且,又存在唯一的使得当时单调递减;当时单调递增;若方程有唯一的实数,则消去可得令,则在上为减函数且当时,即19.解:(1)由题设知当时,,故是数列的一个“时刻”同理当时,都有,即也是数列的一个“时刻”综上,(2)由,易知或①当时,必须从左往右排列,6可以是中任一个,共有5种情况②当时,若中的四个元素是由集合中的元素或或或引起的1.若由引起,即4,3,2,1从左往右排列,则5必须排在4的后面,共4种;2.若由引起,即5,3,2,1从左往右排列,则4必须排在3的后面,共3种3.若由引起,即从左往右排列,则3必须排在2的后面,共2种;4.若由引起,即从左往右排列,则2必须排在1的后面,共1种综上,符合的数列有15种另解:因为数列,由题意可知中的四个元素为中的四

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论