版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省武汉市常青第一学校2023年数学九上期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系中,点,y是关于的二次函数,抛物线经过点.抛物线经过点抛物线经过点抛物线经过点则下列判断:①四条抛物线的开口方向均向下;②当时,四条抛物线表达式中的均随的增大而增大;③抛物线的顶点在抛物线顶点的上方;④抛物线与轴交点在点的上方.其中正确的是A.①②④ B.①③④C.①②③ D.②③④2.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB上的一点,点N是CB上的一点,,当∠CAN与△CMB中的一个角相等时,则BM的值为()A.3或4 B.或4 C.或6 D.4或63.如图,是的外接圆,是直径.若,则等于()A. B. C. D.4.等腰三角形底边长为10㎝,周长为36cm,那么底角的余弦等于().A. B. C. D.5.下列事件中,是随机事件的是()A.任意画两个直角三角形,这两个三角形相似 B.相似三角形的对应角相等C.⊙O的半径为5,OP=3,点P在⊙O外 D.直径所对的圆周角为直角6.下列图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.7.学校要举行“读书月”活动,同学们设计了如下四种“读书月”活动标志图案,其中是中心对称图形的是()A. B. C. D.8.函数与的图象如图所示,有以下结论:①b2-4c>1;②b+c=1;③3b+c+6=1;④当1<<3时,<1.其中正确的个数为()A.1个 B.2个 C.3个 D.4个9.关于反比例函数,下列说法不正确的是()A.函数图象分别位于第一、第三象限B.当x>0时,y随x的增大而减小C.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2D.函数图象经过点(1,2)10.已知反比例函数,下列结论正确的是()A.图象在第二、四象限 B.当时,函数值随的增大而增大C.图象经过点 D.图象与轴的交点为二、填空题(每小题3分,共24分)11.)已知反比例函数y=-,下列结论:①图象必经过点(-1,2);②y随x的增大而增大;③图象在第二、四象限内;④若x>1,则y>-2.其中正确的有__________.(填序号)12.如图,⊙O是△ABC的外接圆,D是AC的中点,连结AD,BD,其中BD与AC交于点E.写出图中所有与△ADE相似的三角形:___________.13.在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,若AE=2,△ADE的面积为4,四边形BCED的面积为5,则边AB的长为________.14.如图,一段抛物线:y=-x(x-2)(0≤x≤2)记为C1,它与x轴交于两点O,A;将C1绕点A旋转180°得到C2,交x轴于A1;将C2绕点A1旋转180°得到C3,交x轴于点A2......如此进行下去,直至得到C2018,若点P(4035,m)在第2018段抛物线上,则m的值为________.15.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.16.若,且一元二次方程有实数根,则的取值范围是.17.若,则=___________.18.如图,已知PA,PB是⊙O的两条切线,A,B为切点.C是⊙O上一个动点.且不与A,B重合.若∠PAC=α,∠ABC=β,则α与β的关系是_______.三、解答题(共66分)19.(10分)如图,已知正方形ABCD的边长为8,点E是DC上的一动点,过点作EF⊥AE,交BC于点F,连结AF.(1)证明:△ADE∽△ECF;(2)若△ADE的周长与△ECF的周长之比为4:3,求BF的长.20.(6分)如图,在平面直角坐标系中A点的坐标为(8,y),AB⊥x轴于点B,sin∠OAB=,反比例函数y=的图象的一支经过AO的中点C,且与AB交于点D.(1)求反比例函数解析式;(2)若函数y=3x与y=的图象的另一支交于点M,求三角形OMB与四边形OCDB的面积的比.21.(6分)如图:△ABC与△DEF中,边BC,EF在同一条直线上,AB∥DE,AC∥DF,且BF=CE,求证:AC=DF.22.(8分)如图,在平面直角坐标系中,点的坐标分别是,.(1)将绕点逆时针旋转得到,点,对应点分别是,,请在图中画出,并写出,的坐标;(2)以点为位似中心,将作位似变换且缩小为原来的,在网格内画出一个符合条件的.23.(8分)有一枚均匀的正四面体,四个面上分别标有数字1,2,3,4,小红随机地抛掷一次,把着地一面的数字记为x;另有三张背面完全相同,正面上分别写有数字-2,-1,1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值.(1)用树状图或列表法表示出S的所有可能情况;(2)分别求出当S=0和S<2时的概率.24.(8分)如图,在正方形网格中,每个小正方形的边长均为1个单位.(1)△ABC绕着点C顺时针旋转90°,画出旋转后对应的△A1B1C1;(2)求△ABC旋转到△A1B1C时,的长.25.(10分)如图,内接于⊙,,高的延长线交⊙于点,,.(1)求⊙的半径;(2)求的长.26.(10分)如图,AB是⊙O的直径,点C在圆O上,BE⊥CD垂足为E,CB平分∠ABE,连接BC(1)求证:CD为⊙O的切线;(2)若cos∠CAB=,CE=,求AD的长.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据BC的对称轴是直线x=1.5,的对称轴是直线x=1,画大致示意图,即可进行判定.【详解】解:①由可知,四条抛物线的开口方向均向下,故①正确;②和的对称轴是直线x=1.5,和的对称轴是直线x=1,开口方向均向下,所以当时,四条抛物线表达式中的均随的增大而增大,故②正确;③和的对称轴都是直线x=1.5,D关于直线x=1.5的对称点为(-1,-2),而A点坐标为(-2,-2),可以判断比更陡,所以抛物线的顶点在抛物线顶点的下方,故③错误;④的对称轴是直线x=1,C关于直线x=1的对称点为(-1,3),可以判断出抛物线与轴交点在点的上方,故④正确.故选:A.【点睛】本题考查了二次函数的图象和性质,根据对称点找到对称轴是解题的关键,充分运用数形结合的思想能使解题更加简便.如果逐个计算出解析式,工作量显然更大.2、D【分析】分两种情形:当时,,设,,可得,解出值即可;当时,过点作,可得,得出,,则,证明,得出方程求解即可.【详解】解:在Rt△ABC中,∠ACB=90°,AC=1,BC=8,∴,AB=10,,设,,①当时,可得,,,,.②当时,如图2中,过点作,可得,,,,,,,,,,,,.综上所述,或1.故选:D.【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.3、C【解析】根据同弧所对的圆周角等于圆心角的一半可得:∠A=
∠BOC=40°.【详解】∵∠BOC=80°,
∴∠A=∠BOC=40°.
故选C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4、A【分析】过顶点A作底边BC的垂线AD,垂足是D点,构造直角三角形.根据等腰三角形的性质,运用三角函数的定义,则可以求得底角的余弦cosB的值.【详解】解:如图,作AD⊥BC于D点.则CD=5cm,AB=AC=13cm.∴底角的余弦=.故选A.【点睛】本题考查的是解直角三角形,解答本题的关键是熟练掌握等腰三角形的三线合一的性质:等腰三角形顶角平分线、底边上的高,底边上的中线重合.5、A【分析】根据相似三角形的判定定理、相似三角形的性质定理、点与圆的位置关系、圆周角定理判断即可.【详解】解:A、任意画两个直角三角形,这两个三角形相似是随机事件,符合题意;B、相似三角形的对应角相等是必然事件,故不符合题意;C、⊙O的半径为5,OP=3,点P在⊙O外是不可能事件,故不符合题意;D、直径所对的圆周角为直角是必然事件,故不符合题意;故选:A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.也考查了相似三角形的判定与性质,点与圆的位置关系,圆周角定理等知识.6、B【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,也是中心对称图形,故此选项正确;
C、不是轴对称图形,是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误.
故选B.【点睛】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、C【分析】根据中心对称图形的概念作答.在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【详解】解:、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;、图形中心绕旋转180°以后,能够与它本身重合,故是中心对称图形,符合题意;、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意.故选:.【点睛】本题考查了中心对称图形的概念.特别注意,中心对称图形是要寻找对称中心,旋转180°后两部分重合.8、C【分析】利用二次函数与一元二次方程的联系对①进行判断;利用,可对②进行判断;利用,对③进行判断;根据时,可对④进行判断.【详解】解:抛物线与轴没有公共点,△,所以①错误;,,,即,所以②正确;,,,,所以③正确;时,,的解集为,所以④正确.故选:C.【点睛】本题考查二次函数图象与系数的关系、二次函数与一元二次方程、二次函数与不等式,掌握二次函数的性质是解题的关键.9、C【分析】根据反比例函数图象上点的坐标特征对D进行判断;根据反比例函数的性质对A、B、C进行判断.【详解】A.k=2>0,则双曲线的两支分别位于第一、第三象限,所以A选项的说法正确;B.当x>0时,y随着x的增大而减小,所以B选项的说法正确;C.若x1<0,x2>0,则y2>y1,所以C选项的说法错误;D.把x=1代入得y=2,则点(1,2)在的图象上,所以D选项的说法正确.故选C.【点睛】本题考查了反比例函数的性质:反比例函数(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.10、C【分析】根据反比例函数的性质逐条判断即可得出答案.【详解】解:A错误图像在第一、三象限B错误当时,函数值y随x的增大而减小C正确D错误反比例函数x≠0,所以与y轴无交点故选C【点睛】此题主要考查了反比例函数的性质,牢牢掌握反比例函数相关性质是解题的关键.二、填空题(每小题3分,共24分)11、①③④【解析】①当x=﹣1时,y=2,即图象必经过点(﹣1,2);②k=﹣2<0,每一象限内,y随x的增大而增大;③k=﹣2<0,图象在第二、四象限内;④k=﹣2<0,每一象限内,y随x的增大而增大,若x>1,则y>﹣2,故答案为①③④.12、,【分析】根据两角对应相等的两个三角形相似即可判断.【详解】解:∵,∴∠ABD=∠DBC,∵∠DAE=∠DBC,∴∠DAE=∠ABD,∵∠ADE=∠ADB,∴△ADE∽△BDA,∵∠DAE=∠EBC,∠AED=∠BEC,∴△AED∽△BEC,故答案为△CBE,△BDA.【点睛】本题考查相似三角形的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13、1【分析】由∠AED=∠B,∠A是公共角,根据有两角对应相等的两个三角形相似,即可证得△ADE∽△ACB,又由相似三角形面积的比等于相似比的平方,可得,然后由AE=2,△ADE的面积为4,四边形BCDE的面积为5,即可求得AB的长.【详解】∵∠AED=∠B,∠A是公共角,∴△ADE∽△ACB,∴,∵△ADE的面积为4,四边形BCED的面积为5,∴△ABC的面积为9,∵AE=2,∴,解得:AB=1.故答案为1.【点睛】本题考查相似三角形的判定性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.14、-1【解析】每次变化时,开口方向变化但形状不变,则a=1,故开口向上时a=1,开口向下时a=-1;与x轴的交点在变化,可发现规律抛物线Cn与x轴交点的规律是(2n-2,0)和(2n,0),由两点式y=a(x-x1)(x-x2)【详解】由抛物线C1:y=-x(x-2),令y=0,∴-x(x-2)=0,解得x1∴与x轴的交点为O(0,0),A(2,0).抛物线C2的开口向上,且与x轴的交点为∴A(2,0)和A1(4,0),则抛物线C2:y=(x-2)(x-4);抛物线C3的开口向下,且与x轴的交点为∴A1(4,0)和A2(6,0),则抛物线C3:y=-(x-4)(x-6);抛物线C4的开口向上,且与x轴的交点为∴A2(6,0)和A3(8,0),则抛物线C4:y=(x-6)(x-8);同理:抛物线C2018的开口向上,且与x轴的交点为∴A2016(4034,0)和A2017(4036,0),则抛物线C2018:y=(x-4034)(x-4036);当x=4035时,y=1×(-1)-1.故答案为:-1.【点睛】本题考查了二次函数的性质及旋转的性质,解题的关键是求出第2018段抛物线的解析式.15、1【分析】本题是典型的一线三角模型,根据正方形的性质、直角三角形两个锐角互余以及等量代换可以证得△AFB≌△AED;然后由全等三角形的对应边相等推知AF=DE、BF=AE,所以EF=AF+AE=1.【详解】解:∵ABCD是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代换);∵BF⊥a于点F,DE⊥a于点E,∴在Rt△AFB和Rt△AED中,∵,∴△AFB≌△DEA(AAS),∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),∴EF=AF+AE=DE+BF=8+5=1.故答案为:1.【点睛】本题考查了正方形的性质、直角三角形的性质、全等三角形的判定和性质及熟悉一线三角模型是解本题的关键.16、且.【解析】试题分析:∵,.∴一元二次方程为.∵一元二次方程有实数根,∴且.考点:(1)非负数的性质;(2)一元二次方程根的判别式.17、【分析】把所求比例形式进行变形,然后整体代入求值即可.【详解】,,;故答案为.【点睛】本题主要考查比例的性质,熟练掌握比例的方法是解题的关键.18、或【分析】分点C在优弧AB上和劣弧AB上两种情况讨论,根据切线的性质得到∠OAC的度数,再根据圆周角定理得到∠AOC的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点C在优弧AB上时,如图,连接OA、OB、OC,∵PA是⊙O的切线,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴;当点C在劣弧AB上时,如图,∵PA是⊙O的切线,∴∠PAO=90°,∴∠OAC=90°-α=∠OCA,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴.综上:α与β的关系是或.故答案为:或.【点睛】本题考查了切线的性质,圆周角定理,三角形内角和定理,等腰三角形的性质,利用圆周角定理是解题的关键,同时注意分类讨论.三、解答题(共66分)19、(1)详见解析;(2)6.5.【分析】(1)根据正方形的性质证明∠FEC=∠DAE,即可求解;(2)根据周长比得到相似比,故,求出FC,即可求解.【详解】解:(1)∵四边形ABCD是正方形∴∠C=∠D=90°,AD=DC=8,∵EF⊥AC,∴∠AEF=90°,∴∠AED+∠FED=90°在Rt△ADE中,∠DAE+∠AED=90°∴∠FEC=∠DAE∴△DAE∽△FEC(2)∵△DAE∽△FEC∴∵△ADE的周长与△ECF的周长之比为4:3∴△ADE的边长与△ECF的边长之比为4:3即∵AD=8,∴EC=6∴DE=8-6=2∴∴FC=1.5∴DF=8-1.5=6.5【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知正方形的性质及相似三角形的判定定理.20、y=;【解析】试题分析:(1)先根据锐角三角函数的定义,求出OA的值,然后根据勾股定理求出AB的值,然后由C点是OA的中点,求出C点的坐标,然后将C的坐标代入反比例函数y=中,即可确定反比例函数解析式;(2)先将y=3x与y=联立成方程组,求出点M的坐标,然后求出点D的坐标,然后连接BC,分别求出△OMB的面积,△OBC的面积,△BCD的面积,进而确定四边形OCDB的面积,进而可求三角形OMB与四边形OCDB的面积的比.试题解析:(1)∵A点的坐标为(8,y),∴OB=8,∵AB⊥x轴于点B,sin∠OAB=,∴,∴OA=10,由勾股定理得:AB=,∵点C是OA的中点,且在第一象限内,∴C(4,3),∵点C在反比例函数y=的图象上,∴k=12,∴反比例函数解析式为:y=;(2)将y=3x与y=联立成方程组,得:,解得:,,∵M是直线与双曲线另一支的交点,∴M(﹣2,﹣6),∵点D在AB上,∴点D的横坐标为8,∵点D在反比例函数y=的图象上,∴点D的纵坐标为,∴D(8,),∴BD=,连接BC,如图所示,∵S△MOB=•8•|﹣6|=24,S四边形OCDB=S△OBC+S△BCD=•8•3+=15,∴.考点:反比例函数与一次函数的交点问题.21、见解析.【分析】先根据BF=CE,得出BC=EF,再利用平行线的性质可得出两组对应角相等,再加上BC=EF,利用ASA即可证明△ABC≌△DEF,则结论可证.【详解】证明:∵AB∥DE,∴∠B=∠E,∵AC∥DF∴∠ACB=∠EFD,∵BF=CE∴BC=EF,且∠B=∠E,∠ACB=∠EFD,∴△ABC≌△DEF(ASA)∴AC=DF【点睛】本题主要考查全等三角形的判定及性质,掌握全等三角形的判定方法是解题的关键.22、(1)见解析,,;(2)见解析【分析】(1)利用网格特点和旋转的性质,画出点O,B对应点E,F,从而得到△AEF,然后写出E、F的坐标;
(2)分别连接OE、OF,然后分别去OA、OE、OF的三等份点得到A1、E1、F1,从而得到△A1E1F1.【详解】解:(1)如图,为所作,,(2)如图,为所作图形.【点睛】本题考查了作图-位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.23、(1)答案见解析;(2),【解析】试题分析:列举出符合题意的各种情况的个数,再根据概率公式解答即可.解:(1)画树状图,(2)由图可知,所有可能出现的结果有12种,其中S=0的有2种,S<2的有5种,∴P(S=0)=,P(S<2)=.24、(1)见解析;(2)【分析】(1)依据△ABC绕着点C顺时针旋转90°,即可画出旋转后对应的△A1B1C1;(2)依据弧长计算公式,即可得到弧BB1的长.【详解】解:(1)如图所示,△A1B1C1即为所求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年江阴市云亭中学教师招聘备考题库及1套完整答案详解
- 2025年滨州医学院烟台附属医院高级专业技术岗位公开招聘人员备考题库及答案详解1套
- 2025年天津市工会社会工作者招聘41人备考题库及答案详解一套
- 山西省2025年(夏季)普通高中学业水平合格性考试地理试卷(含答案详解)
- 2025年关于为山东省人民检察院公开招聘聘用制书记员的备考题库参考答案详解
- 新疆医科大学2025年高层次人才引进备考题库及一套参考答案详解
- 2025年莆田市国睿产业园区运营管理有限公司公开招聘企业员工的备考题库及1套参考答案详解
- 2025年社会保险法合规要求试题及答案
- 2025年吴川市公开招聘大学生乡村医生28人备考题库及1套参考答案详解
- 2025年福建医科大学孟超肝胆医院人员控制数公开招聘工作人员第二批备考题库完整参考答案详解
- 基于大模型的智能体应用场景能力要求
- 医药行业市场前景及投资研究报告:In Vivo CARTBD赛道早期技术广阔前景
- 2025年书记员面试题(附答案)
- 2025年1月国开(中央电大)法学本科《知识产权法》期末考试试题及答案
- 国库集中支付课件
- 小学苏教版科学二年级上册(2024)知识点梳理及2025秋期末测试卷
- 2026年售后服务管理制度完善与企业售后工作规范化指南
- 2024-2025学年山东省烟台市招远市一年级(上)期末数学试卷
- 营销分析年终总结
- 初中安全教育教案全集
- 培训学校教师安全教育课件
评论
0/150
提交评论