河南省三门峡市2023-2024学年高三第五次模拟考试数学试卷含解析_第1页
河南省三门峡市2023-2024学年高三第五次模拟考试数学试卷含解析_第2页
河南省三门峡市2023-2024学年高三第五次模拟考试数学试卷含解析_第3页
河南省三门峡市2023-2024学年高三第五次模拟考试数学试卷含解析_第4页
河南省三门峡市2023-2024学年高三第五次模拟考试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省三门峡市2023-2024学年高三第五次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数在区间有三个零点,,,且,若,则的最小正周期为()A. B. C. D.2.如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为()A. B.C. D.3.设,则A. B. C. D.4.已知,是两条不重合的直线,是一个平面,则下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则5.将函数的图像向左平移个单位得到函数的图像,则的最小值为()A. B. C. D.6.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)7.四人并排坐在连号的四个座位上,其中与不相邻的所有不同的坐法种数是()A.12 B.16 C.20 D.88.已知为抛物线的焦点,点在抛物线上,且,过点的动直线与抛物线交于两点,为坐标原点,抛物线的准线与轴的交点为.给出下列四个命题:①在抛物线上满足条件的点仅有一个;②若是抛物线准线上一动点,则的最小值为;③无论过点的直线在什么位置,总有;④若点在抛物线准线上的射影为,则三点在同一条直线上.其中所有正确命题的个数为()A.1 B.2 C.3 D.49.已知,,,则a,b,c的大小关系为()A. B. C. D.10.是虚数单位,复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知为定义在上的奇函数,且满足当时,,则()A. B. C. D.12.设函数,若在上有且仅有5个零点,则的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在△ABC中,∠BAC=,AD为∠BAC的角平分线,且,若AB=2,则BC=_______.14.已知是定义在上的偶函数,其导函数为.若时,,则不等式的解集是___________.15.已知下列命题:①命题“∃x0∈R,”的否定是“∀x∈R,x2+1<3x”;②已知p,q为两个命题,若“p∨q”为假命题,则“”为真命题;③“a>2”是“a>5”的充分不必要条件;④“若xy=0,则x=0且y=0”的逆否命题为真命题.其中所有真命题的序号是________.16.已知函数,若,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,.(1)求函数的极值;(2)对任意,都有,求实数a的取值范围.18.(12分)已知中心在原点的椭圆的左焦点为,与轴正半轴交点为,且.(1)求椭圆的标准方程;(2)过点作斜率为、的两条直线分别交于异于点的两点、.证明:当时,直线过定点.19.(12分)在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.(1)求曲线的普通方程和极坐标方程;(2)设直线与曲线交于两点,求的取值范围.20.(12分)已知数列,其前项和为,满足,,其中,,,.⑴若,,(),求证:数列是等比数列;⑵若数列是等比数列,求,的值;⑶若,且,求证:数列是等差数列.21.(12分)己知的内角的对边分别为.设(1)求的值;(2)若,且,求的值.22.(10分)设(1)当时,求不等式的解集;(2)若,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据题意,知当时,,由对称轴的性质可知和,即可求出,即可求出的最小正周期.【详解】解:由于在区间有三个零点,,,当时,,∴由对称轴可知,满足,即.同理,满足,即,∴,,所以最小正周期为:.故选:C.【点睛】本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计算能力.2、D【解析】因为蛋巢的底面是边长为的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为,又因为鸡蛋的体积为,所以球的半径为,所以球心到截面的距离,而截面到球体最低点距离为,而蛋巢的高度为,故球体到蛋巢底面的最短距离为.点睛:本题主要考查折叠问题,考查球体有关的知识.在解答过程中,如果遇到球体或者圆锥等几何体的内接或外接几何体的问题时,可以采用轴截面的方法来处理.也就是画出题目通过球心和最低点的截面,然后利用弦长和勾股定理来解决.球的表面积公式和体积公式是需要熟记的.3、C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.4、D【解析】

利用空间位置关系的判断及性质定理进行判断.【详解】解:选项A中直线,还可能相交或异面,选项B中,还可能异面,选项C,由条件可得或.故选:D.【点睛】本题主要考查直线与平面平行、垂直的性质与判定等基础知识;考查空间想象能力、推理论证能力,属于基础题.5、B【解析】

根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可.【详解】将函数的图象向左平移个单位,得到,此时与函数的图象重合,则,即,,当时,取得最小值为,故选:.【点睛】本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键.6、C【解析】

根据并集的求法直接求出结果.【详解】∵,∴,故选C.【点睛】考查并集的求法,属于基础题.7、A【解析】

先将除A,B以外的两人先排,再将A,B在3个空位置里进行插空,再相乘得答案.【详解】先将除A,B以外的两人先排,有种;再将A,B在3个空位置里进行插空,有种,所以共有种.故选:A【点睛】本题考查排列中不相邻问题,常用插空法,属于基础题.8、C【解析】

①:由抛物线的定义可知,从而可求的坐标;②:做关于准线的对称点为,通过分析可知当三点共线时取最小值,由两点间的距离公式,可求此时最小值;③:设出直线方程,联立直线与抛物线方程,结合韦达定理,可知焦点坐标的关系,进而可求,从而可判断出的关系;④:计算直线的斜率之差,可得两直线斜率相等,进而可判断三点在同一条直线上.【详解】解:对于①,设,由抛物线的方程得,则,故,所以或,所以满足条件的点有二个,故①不正确;对于②,不妨设,则关于准线的对称点为,故,当且仅当三点共线时等号成立,故②正确;对于③,由题意知,,且的斜率不为0,则设方程为:,设与抛物线的交点坐标为,联立直线与抛物线的方程为,,整理得,则,所以,则.故的倾斜角互补,所以,故③正确.对于④,由题意知,由③知,则,由,知,即三点在同一条直线上,故④正确.故选:C.【点睛】本题考查了抛物线的定义,考查了直线与抛物线的位置关系,考查了抛物线的性质,考查了直线方程,考查了两点的斜率公式.本题的难点在于第二个命题,结合初中的“饮马问题”分析出何时取最小值.9、D【解析】

与中间值1比较,可用换底公式化为同底数对数,再比较大小.【详解】,,又,∴,即,∴.故选:D.【点睛】本题考查幂和对数的大小比较,解题时能化为同底的化为同底数幂比较,或化为同底数对数比较,若是不同类型的数,可借助中间值如0,1等比较.10、D【解析】

求出复数在复平面内对应的点的坐标,即可得出结论.【详解】复数在复平面上对应的点的坐标为,该点位于第四象限.故选:D.【点睛】本题考查复数对应的点的位置的判断,属于基础题.11、C【解析】

由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【详解】由题意,,则函数的周期是,所以,,又函数为上的奇函数,且当时,,所以,.故选:C.【点睛】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.12、A【解析】

由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.【详解】当时,,∵在上有且仅有5个零点,∴,∴.故选:A.【点睛】本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由,求出长度关系,利用角平分线以及面积关系,求出边,再由余弦定理,即可求解.【详解】,,,,.故答案为:.【点睛】本题考查共线向量的应用、面积公式、余弦定理解三角形,考查计算求解能力,属于中档题.14、【解析】

构造,先利用定义判断的奇偶性,再利用导数判断其单调性,转化为,结合奇偶性,单调性求解不等式即可.【详解】令,则是上的偶函数,,则在上递减,于是在上递增.由得,即,于是,则,解得.故答案为:【点睛】本题考查了利用函数的奇偶性、单调性解不等式,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.15、②【解析】命题“∃x∈R,x2+1>3x”的否定是“∀x∈R,x2+1≤3x”,故①错误;“p∨q”为假命题说明p假q假,则(p)∧(q)为真命题,故②正确;a>5⇒a>2,但a>2⇒/a>5,故“a>2”是“a>5”的必要不充分条件,故③错误;因为“若xy=0,则x=0或y=0”,所以原命题为假命题,故其逆否命题也为假命题,故④错误.16、【解析】

根据题意,利用函数奇偶性的定义判断函数的奇偶性,利用函数奇偶性的性质求解即可.【详解】因为函数,其定义域为,所以其定义域关于原点对称,又,所以函数为奇函数,因为,所以.故答案为:【点睛】本题考查函数奇偶性的判断及其性质;考查运算求解能力;熟练掌握函数奇偶性的判断方法是求解本题的关键;属于中档题、常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时,无极值;当时,极小值为;(2).【解析】

(1)求导,对参数进行分类讨论,即可容易求得函数的极值;(2)构造函数,两次求导,根据函数单调性,由恒成立问题求参数范围即可.【详解】(1)依题,当时,,函数在上单调递增,此时函数无极值;当时,令,得,令,得所以函数在上单调递增,在上单调递减.此时函数有极小值,且极小值为.综上:当时,函数无极值;当时,函数有极小值,极小值为.(2)令易得且,令所以,因为,,从而,所以,在上单调递增.又若,则所以在上单调递增,从而,所以时满足题意.若,所以,,在中,令,由(1)的单调性可知,有最小值,从而.所以所以,由零点存在性定理:,使且在上单调递减,在上单调递增.所以当时,.故当,不成立.综上所述:的取值范围为.【点睛】本题考查利用导数研究含参函数的极值,涉及由恒成立问题求参数范围的问题,属压轴题.18、(1);(2)见解析.【解析】

(1)在中,计算出的值,可得出的值,进而可得出的值,由此可得出椭圆的标准方程;(2)设点、,设直线的方程为,将该直线方程与椭圆方程联立,列出韦达定理,根据已知条件得出,利用韦达定理和斜率公式化简得出与所满足的关系式,代入直线的方程,即可得出直线所过定点的坐标.【详解】(1)在中,,,,,,,,因此,椭圆的标准方程为;(2)由题不妨设,设点,联立,消去化简得,且,,,,,∴代入,化简得,化简得,,,,直线,因此,直线过定点.【点睛】本题考查椭圆方程的求解,同时也考查了椭圆中直线过定点的问题,考查计算能力,属于中等题.19、(1)的极坐标方程为,普通方程为;(2)【解析】

(1)根据三角函数恒等变换可得,,可得曲线的普通方程,再运用图像的平移得依题意得曲线的普通方程为,利用极坐标与平面直角坐标互化的公式可得方程;(2)法一:将代入曲线的极坐标方程得,运用韦达定理可得,根据,可求得的范围;法二:设直线的参数方程为(为参数,为直线的倾斜角),代入曲线的普通方程得,运用韦达定理可得,根据,可求得的范围;【详解】(1),,即曲线的普通方程为,依题意得曲线的普通方程为,令,得曲线的极坐标方程为;(2)法一:将代入曲线的极坐标方程得,则,,,异号,,,;法二:设直线的参数方程为(为参数,为直线的倾斜角),代入曲线的普通方程得,则,,,异号,,.【点睛】本题考查参数方程与普通方程,极坐标方程与平面直角坐标方程之间的转化,求解几何量的取值范围,关键在于明确极坐标系中极径和极角的几何含义,直线的参数方程,参数的几何意义,属于中档题.20、(1)见解析(2)(3)见解析【解析】试题分析:(1)(),所以,故数列是等比数列;(2)利用特殊值法,得,故;(3)得,所以,得,可证数列是等差数列.试题解析:(1)证明:若,则当(),所以,即,所以,又由,,得,,即,所以,故数列是等比数列.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论