版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
冲刺中考数学压轴之满分集训专题03几何图形中的有关计算(四大类)【典例分析】【类型一:与动点有关的计算】1.(2021•即墨区校级二模)如图,正方形ABCD的边长为3,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是()A.3 B.1.5 C.3 D.【答案】D【解答】解:如图,在AC上取AD'=AD=3,作D'P⊥AD于P,交AE于Q.∵AE平分∠DAC,∴∠DAQ=∠D'AQ,∴△DAQ≌△D'AQ(SAS),∴DQ=D'Q,∴DQ+PQ=D'Q+PQ≥D'P,∴D'P=AP=AD'=,故选:D.2.(2020•潮南区模拟)如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.10 B.9 C.8 D.6【答案】B【解答】解:连接AD,AM,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=14,解得AD=7,∵EF是线段AC的垂直平分线,∴AM=CM,当点M在AD上时,DM+CM最小,最小值为AD,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=7+×4=7+2=9.故选:B.3.(2021•枣庄)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=6,BD=6,点P是AC上一动点,点E是AB的中点,则PD+PE的最小值为()A.3 B.6 C.3 D.6【答案】A【解答】解:如图,连接DE,在△DPE中,DP+PE>DE,∴当点P在DE上时,PD+PE的最小值为DE的长,∵四边形ABCD是菱形,∴AO=CO=3,BO=DO=3,AC⊥BD,AB=AD,∴tan∠ABO==,∴∠ABO=60°,∴△ABD是等边三角形,∵点E是AB的中点,∴DE⊥AB,∵sin∠ABD=,∴=,∴DE=3,故选:A.4.(2022•赤峰)如图,菱形ABCD,点A、B、C、D均在坐标轴上.∠ABC=120°,点A(﹣3,0),点E是CD的中点,点P是OC上的一动点,则PD+PE的最小值是()A.3 B.5 C.2 D.【答案】A【解答】解:根据题意得,E点关于x轴的对称点是BC的中点E',连接DE'交AC与点P,此时PD+PE有最小值为DE',∵四边形ABCD是菱形,∠ABC=120°,点A(﹣3,0),∴OA=OC=3,∠DBC=60°,∴△BCD是等边三角形,∴DE'=OC=3,即PD+PE的最小值是3,故选:A.5.(2022•广安)如图,菱形ABCD的边长为2,点P是对角线AC上的一个动点,点E、F分别为边AD、DC的中点,则PE+PF的最小值是()A.2 B. C.1.5 D.【答案】A【解答】解:如图,取AB的中点T,连接PT,FT.∵四边形ABCD是菱形,∴CD∥AB,CD=AB,∵DF=CF,AT=TB,∴DF=AT,DF∥AT,∴四边形ADFT是平行四边形,∴AD=FT=2,∵四边形ABCD是菱形,AE=DE,AT=TB,∴E,T关于AC对称,∴PE=PT,∴PE+PF=PT+PF,∵PF+PT≥FT=2,∴PE+PF≥2,∴PE+PF的最小值为2.故选:A.6.(2022•泰安)如图,四边形ABCD为矩形,AB=3,BC=4,点P是线段BC上一动点,点M为线段AP上一点,∠ADM=∠BAP,则BM的最小值为()A. B. C.﹣ D.﹣2【答案】D【解答】解:如图,取AD的中点O,连接OB,OM.∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=4,∴∠BAP+∠DAM=90°,∵∠ADM=∠BAP,∴∠ADM+∠DAM=90°,∴∠AMD=90°,∵AO=OD=2,∴OM=AD=2,∴点M在以O为圆心,2为半径的⊙O上,∵OB===,∴BM≥OB﹣OM=﹣2,∴BM的最小值为﹣2.故选:D.7.(鄂尔多斯)如图,直线y=﹣x+4与两坐标轴交A、B两点,点P为线段OA上的动点,连接BP,过点A作AM垂直于直线BP,垂足为M,当点P从点O运动到点A时,则点M运动路径的长为.【答案】【解答】解:∵AM垂直于直线BP,∴∠BMA=90°,∴点M的路径是以AB的中点N为圆心,AB长的一半为半径的,连接ON,∵直线y=﹣x+4与两坐标轴交A、B两点,∴OA=OB=4,∴ON⊥AB,∴∠ONA=90°,∵AB==4,∴ON=2,∴=•2=.故答案为:π.8.(2022•贺州)如图,在矩形ABCD中,AB=8,BC=6,E,F分别是AD,AB的中点,∠ADC的平分线交AB于点G,点P是线段DG上的一个动点,则△PEF的周长最小值为.【答案】【解答】解:如图,在DC上截取DT,使得DT=DE,连接FT,过点T作TH⊥AB于点H.∵四边形ABCD是矩形,∴∠A=∠ADT=90°,∵∠AHT=90°,∴四边形AHTD是矩形,∵AE=DE=AD=3.AF=FB=AB=4,∴AH=DT=3,HF=AF﹣AH=4﹣3=1,HT=AD=6,∴FT===,∵DG平分∠ADC,DE=DT,∴E、T关于DG对称,∴PE=PT,∴PE+PF=PF+PT≥FT=,∵EF===5,∴△EFP的周长的最小值为5+,故答案为:5+.9.(2020•广西)如图,在边长为2的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为.【答案】π【解答】解:如图,作△CBD的外接圆⊙O,连接OB,OD,∵四边形ABCD是菱形,∴∠A=∠C=60°,AB=BC=CD=AD,∴△ABD,△BCD都是等边三角形,∴BD=AD,∠BDF=∠DAE,∵DF=AE,∴△BDF≌△DAE(SAS),∴∠DBF=∠ADE,∵∠ADE+∠BDE=60°,∴∠DBF+∠BDP=60°,∴∠BPD=120°,∵∠C=60°,∴∠C+∠DPB=180°,∴B,C,D,P四点共圆,由BC=CD=BD=2,可得OB=OD=2,∵∠BOD=2∠C=120°,∴点P的运动的路径的长==π.故答案为π.10.(2021•威海)如图,在正方形ABCD中,AB=2,E为边AB上一点,F为边BC上一点.连接DE和AF交于点G,连接BG.若AE=BF,则BG的最小值为.【答案】﹣1【解答】解:如图,取AD的中点T,连接BT,GT,∵四边形ABCD是正方形,∴AD=AB=2,∠DAE=∠ABF=90°,在△DAE和△ABF中,,∴△DAE≌△ABF(SAS),∴∠ADE=∠BAF,∵∠BAF+∠DAF=90°,∴∠EDA+∠DAF=90°,∴∠AGD=90°,∵DT=AT,∴GT=AD=1,BT===,∴BG≥BT﹣GT,∴BG≥﹣1,∴BG的最小值为﹣1.故答案为:﹣1.【类型二:与折叠有关的计算】11.(2020•青岛)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A. B. C.2 D.4【答案】C【解答】解:∵矩形ABCD,∴AD∥BC,AD=BC,AB=CD,∴∠EFC=∠AEF,由折叠得,∠EFC=∠AFE,∴∠AFE=∠AEF,∴AE=AF=5,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB==4,在Rt△ABC中,AC==4,∴OA=OC=2,故选:C.12.如图,在△ABC纸片中,∠B=30°,AB=AC=,点D在AB上运动,将纸片沿CD折叠,得到点B的对应点B′(D在A点时,点D的对应点是本身),则折叠过程对应点B′的路径长是()A.3 B.6 C.π D.2π【答案】C【解答】解:过点A作AE⊥BC于点E,∵∠B=30°,AB=AC=,∴BE=ABcos∠B=,∴BC=2BE=3,由折叠的性质可得:∠BCB''=2∠ACB=60°,∴B′的路径长==π.故选:C.13.(2022•宜宾)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE交AB于点F,则cos∠ADF的值为()A. B. C. D.【答案】C【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AB∥CD,AD=BC=3,AB=CD=5,∴∠BDC=∠DBF,由折叠的性质可得∠BDC=∠BDF,∴∠BDF=∠DBF,∴BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt△ADF中,32+(5﹣x)2=x2,∴x=,∴cos∠ADF=,故选:C.14.(2022•毕节市)矩形纸片ABCD中,E为BC的中点,连接AE,将△ABE沿AE折叠得到△AFE,连接CF.若AB=4,BC=6,则CF的长是()A.3 B. C. D.【答案】D【解答】解:连接BF,交AE于O点,∵将△ABE沿AE折叠得到△AFE,∴BE=EF,∠AEB=∠AEF,AE垂直平分BF,∵点E为BC的中点,∴BE=CE=EF=3,∴∠EFC=∠ECF,∵∠BEF=∠ECF+∠EFC,∴∠AEB=∠ECF,∴AE∥CF,∴∠BFC=∠BOE=90°,在Rt△ABE中,由勾股定理得,AE==,∴BO==,∴BF=2BO=,在Rt△BCF中,由勾股定理得,CF===,故选:D.15.(2022•湖州)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是()A.BD=10 B.HG=2 C.EG∥FH D.GF⊥BC【答案】D【解答】解:∵四边形ABCD是矩形,∴∠A=90°,BC=AD,∵AB=6,BC=8,∴BD===10,故A选项不符合题意;∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,∴AB=BG=6,CD=DH=6,∴GH=BG+DH﹣BD=6+6﹣10=2,故B选项不符合题意;∵四边形ABCD是矩形,∴∠A=∠C=90°,∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,∴∠A=∠BGE=∠C=∠DHF=90°,∴EG∥FH.故C选项不符合题意;∵GH=2,∴BH=DG=BG﹣GH=6﹣2=4,设FC=HF=x,则BF=8﹣x,∴x2+42=(8﹣x)2,∴x=3,∴CF=3,∴,又∵,∴,若GF⊥BC,则GF∥CD,∴,故D选项符合题意.故选:D.16.(2021•天津)如图,在△ABC中,∠BAC=120°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是()A.∠ABC=∠ADCB.CB=CD C.DE+DC=BC D.AB∥CD【答案】D【解答】解:由旋转的性质得出CD=CA,∠EDC=∠BAC=120°,∵点A,D,E在同一条直线上,∴∠ADC=60°,∴△ADC为等边三角形,∴∠DAC=60°,∴∠BAD=60°=∠ADC,∴AB∥CD,故选:D.17.(2022•滨州)正方形ABCD的对角线相交于点O(如图1),如果∠BOC绕点O按顺时针方向旋转,其两边分别与边AB、BC相交于点E、F(如图2),连接EF,那么在点E由B到A的过程中,线段EF的中点G经过的路线是()A.线段 B.圆弧 C.折线 D.波浪线【答案】A【解答】解:建立如图平面直角坐标系,设正方形ABCD的边长为1,∵四边形ABCD是正方形,∴∠OAE=∠OBF=45°,OA=OB,∵∠AOB=∠EOF=90°,∴∠AOE=∠BOF,∴△AOE≌△BOF(ASA),∴AE=BF,设AE=BF=a,则F(a,0),E(0,1﹣a),∵EG=FG,∴G(a,﹣a),∴点G在直线y=﹣x+上运动,∴点G的运动轨迹是线段,故选:A.18.(2022•眉山)如图,四边形ABCD为正方形,将△EDC绕点C逆时针旋转90°至△HBC,点D,B,H在同一直线上,HE与AB交于点G,延长HE与CD的延长线交于点F,HB=2,HG=3.以下结论:①∠EDC=135°;②EC2=CD•CF;③HG=EF;④sin∠CED=.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个【答案】D【解答】解:∵△EDC旋转得到△HBC,∴∠EDC=∠HBC,∵ABCD为正方形,D,B,H在同一直线上,∴∠HBC=180°﹣45°=135°,∴∠EDC=135°,故①正确;∵△EDC旋转得到△HBC,∴EC=HC,∠ECH=90°,∴∠HEC=45°,∴∠FEC=180°﹣45°=135°,∵∠ECD=∠ECF,∴△EFC∽△DEC,∴,∴EC2=CD•CF,故②正确;设正方形边长为a,∵∠GHB+∠BHC=45°,∠GHB+∠HGB=45°,∴∠BHC=∠HGB=∠DEC,∵∠GBH=∠EDC=135°,∴△GBH∽△EDC,∴,即,∵△HEC是等腰直角三角形,∴,∵∠GHB=∠FHD,∠GBH=∠HDF=135°,∴△HBG∽△HDF,∴,即,解得:EF=3,∵HG=3,∴HG=EF,故③正确;过点E作EM⊥FD交FD于点M,∴∠EDM=45°,∵ED=HB=2,∴,∵EF=3,∴,∵∠DEC+∠DCE=45°,∠EFC+∠DCE=45°,∴∠DEC=∠EFC,∴,故④正确综上所述:正确结论有4个,故选:D.19.(2022•单县一模)如图,将边长为8cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是cm.【答案】16【解答】解:设EF=x,∵EF=DF,∴DF=x,则AF=8﹣x;而AE=4,由勾股定理得:x2=42+(8﹣x)2,解得:x=5;AF=8﹣5=3;由题意得:∠GEF=∠D=90°,∠A=∠B=90°,∴∠AEF+∠AFE=∠AEF+∠BEG,∴∠AFE=∠BEG;∴△AEF∽△BGE,∴==,∴EG==,BG==,∴△EBG的周长=++4=16.故答案为16.20.如图,在矩形ABCD中,AB=3,BC=5,点P在CD边上,联结AP.如果将△ADP沿直线AP翻折,点D恰好落在线段BC上,那么的值为.【答案】【解答】解:如图:∵将△ADP沿直线AP翻折,点D恰好落在线段BC上的D',∴AD'=AD=5,PD=PD',∠AD'P=∠D=90°,在Rt△ABD'中,BD'===4,∴CD'=BC﹣BD'=5﹣4=1,设CP=x,则PD=PD'=3﹣x,在Rt△CPD'中,CD'2+CP2=PD'2,∴12+x2=(3﹣x)2,解得x=,∴CP=,PD=,∴S△ADP=AD•PD=×5×=,S四边形ABCP=S矩形ABCD﹣S△ADP=3×5﹣=,∴==,故答案为:.21.(2022•铜仁市)如图,在边长为2的正方形ABCD中,点E为AD的中点,将△CDE沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE上的动点,过点N作NP∥EM交MC于点P,则MN+NP的最小值为.【答案】【解答】解:作点P关于CE的对称点P′,由折叠的性质知CE是∠DCM的平分线,∴点P′在CD上,过点M作MF⊥CD于F,交CE于点G,∵MN+NP=MN+NP′≥MF,∴MN+NP的最小值为MF的长,连接DG,DM,由折叠的性质知CE为线段DM的垂直平分线,∵AD=CD=2,DE=1,∴CE==,∵CE×DO=CD×DE,∴DO=,∴EO=,∵MF⊥CD,∠EDC=90°,∴DE∥MF,∴∠EDO=∠GMO,∵CE为线段DM的垂直平分线,∴DO=OM,∠DOE=∠MOG=90°,∴△DOE≌△MOG,∴DE=GM,∴四边形DEMG为平行四边形,∵∠MOG=90°,∴四边形DEMG为菱形,∴EG=2OE=,GM=DE=1,∴CG=,∵DE∥MF,即DE∥GF,∴△CFG∽△CDE,∴,即,∴FG=,∴MF=1+=,∴MN+NP的最小值为;方法二:同理方法一得出MN+NP的最小值为MF的长,DO=,∴OC==,DM=2DO=,∵S△CDM=DM•OC=CD•MF,即×=2×MF,∴MF=,∴MN+NP的最小值为;故答案为:【类型三:与旋转有关的计算】22.(2020•桂林)如图,已知的半径为5,所对的弦AB长为8,点P是的中点,将绕点A逆时针旋转90°后得到,则在该旋转过程中,点P的运动路径长是()A.π B.π C.2π D.2π【答案】B【解答】解:如图,设的圆心为O,连接OP,OA,AP',AP,AB'∵圆O半径为5,所对的弦AB长为8,点P是的中点,根据垂径定理,得AC=AB=4,PO⊥AB,OC==3,∴PC=OP﹣OC=5﹣3=2,∴AP==2,∵将绕点A逆时针旋转90°后得到,∴∠PAP′=∠BAB′=90°,∴LPP′==π.则在该旋转过程中,点P的运动路径长是π.故选:B.23.(2022•辽宁)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E是OD的中点,连接CE并延长交AD于点G,将线段CE绕点C逆时针旋转90°得到CF,连接EF,点H为EF的中点.连接OH,则的值为.【答案】【解答】解:以O为原点,平行于AB的直线为x轴,建立直角坐标系,过E作EM⊥CD于M,过F作FN⊥DC,交DC延长线于N,如图:设正方形ABCD的边长为2,则C(1,1),D(﹣1,1),∵E为OD中点,∴E(﹣,),设直线CE解析式为y=kx+b,把C(1,1),E(﹣,)代入得:,解得,∴直线CE解析式为y=x+,在y=x+中,令x=﹣1得y=,∴G(﹣1,),∴GE==,∵将线段CE绕点C逆时针旋转90°得到CF,∴CE=CF,∠ECF=90°,∴∠MCE=90°﹣∠NCF=∠NFC,∵∠EMC=∠CNF=90°,∴△EMC≌△CNF(AAS),∴ME=CN,CM=NF,∵E(﹣,),C(1,1),∴ME=CN=,CM=NF=,∴F(,﹣),∵H是EF中点,∴H(,0),∴OH=,∴==.故答案为:.24.(2022•柳州)如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为.【答案】2﹣2【解答】解:连接DG,将DG绕点D逆时针旋转90°得DM,连接MG,CM,MF,作MH⊥CD于H,∵∠EDF=∠GDM,∴∠EDG=∠FDM,∵DE=DF,DG=DM,∴△EDG≌△MDF(SAS),∴MF=EG=2,∵∠GDC=∠DMH,∠DCG=∠DHM,DG=DM,∴△DGC≌△MDH(AAS),∴CG=DH=2,MH=CD=4,∴CM==2,∵CF≥CM﹣MF,∴CF的最小值为2﹣2,故答案为:2﹣2.【类型一:与图形构造有关的计算】25.(2022•安顺模拟)如图,点A为等边三角形BCD外一点,连接AB、AD且AB=AD,过点A作AE∥CD分别交BC、BD于点E、F,若3BD=4AE,EF=5,则线段AE的长.【答案】15【解答】解:方法一:如图,过点A作BC平行线AG交DC于点G,∵AE∥CD,∴四边形AECG是平行四边形,∵AB=AD,∴∠ABD=∠ADB,∵△BCD是等边三角形,∴∠DBC=∠BDC=60°,∴∠ABE=∠ADG,∵AE∥CD,∴∠AEB=∠C,∵AG∥BC,∴∠AGD=∠C,∴∠AEB=∠AGD,在△AEB和△AGD中,,∴△AEB≌△AGD(AAS),∴AE=AG,∴四边形AECG是菱形,∴AE=EC,∴∠AEB=∠BCD=60°,∴∠AEB=∠FBE=∠BFE=60°,∴△BEF是等边三角形,∴BE=BF=EF=5,∵3BD=4AE,∴=,设BD=4x,则AE=3x,∵△BCD是等边三角形,∴BC=CD=BD=4x,∴CE=BC﹣BE=4x﹣5,∴4x﹣5=3x,解得x=5,∴AE=3x=15,方法二:如图,连接AC交BD于点O,∵3BD=4AE,∴=,设BD=4x,则AE=3x,∵△BCD是等边三角形,∴BC=CD=BD=4x,∠DCB=∠DBC=60°,∵AB=AD,BC=CD,∴AC是BD的垂直平分线,∴OB=OD=2x,OC平分∠BCD,∴∠DCO=DCB=30°,∵AE∥CD,∴∠DCO=30°,∴OC===2x,∵AE∥CD,∴∠AEB=∠BCD=60°,∴∠AEB=∠FBE=∠BFE=60°,∴△BEF是等边三角形,∴BE=BF=EF=5,∴OF=OB﹣BF=2x﹣5,AF=AE﹣EF=3x﹣5,∵∠AOF=∠COD,∠OAF=∠OC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人借款合同2026年合同备案版
- 2026年口腔诊所环保检测合同协议
- 2026年旅游度假酒店管理合同
- 2026年电商直播推广合同协议
- 2026年进口海鲜食材采购合同协议
- 2026年家庭油烟管道专业清洗合同
- 自媒体运营合同2026年数据监测协议
- 2026年软件定制开发合同协议
- 2026年服装仓储分拣服务合同
- 家用吊机安全常识培训课件
- 校长在食堂从业人员培训会上的讲话
- (高清版)DBJ∕T 13-91-2025 《福建省房屋市政工程安全风险分级管控与隐患排查治理标准》
- 美育视域下先秦儒家乐教思想对舞蹈教育的当代价值研究
- 运输企业隐患排查奖惩制度
- 学堂在线 雨课堂 学堂云 工程伦理2.0 章节测试答案
- 生态旅游区建设场地地质灾害危险性评估报告
- 网络传播法规(自考14339)复习题库(含答案)
- 广东省江门市蓬江区2025年七年级上学期语文期末考试试卷及答案
- 苏州市施工图无障碍设计专篇参考样式(试行)2025
- 2024中国人形机器人产业发展蓝皮书1
- 社会工作项目调研方案含问卷及访谈提纲
评论
0/150
提交评论