版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年上海市静安区风华初级中学八年级数学第二学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,已知函数y=x+1和y=ax+3图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是()A. B. C. D.2.已知:1号探测气球从海拔5m处匀速上升,同时,2号探测气球从海拔15m处匀速上升,且两个气球都上升了1h.两个气球所在位置的海拔y(单位:m)与上升时间x(单位:min)之间的函数关系如图所示,根据图中的信息,下列说法:①上升20min时,两个气球都位于海拔25m的高度;②1号探测气球所在位置的海拔关于上升时间x的函数关系式是y=x+5(0≤x≤60);③记两个气球的海拔高度差为m,则当0≤x≤50时,m的最大值为15m.其中,说法正确的个数是()A.0 B.1 C.2 D.33.如图,已知▱ABCD中,点M是BC的中点,且AM=6,BD=12,AD=4,则该平行四边形的面积为()A.24 B.36 C.48 D.724.如图,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B﹣A﹣D﹣C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的()A.点C B.点O C.点E D.点F5.已知不等式的解集是,下列各图中有可能是函数的图象的是()A. B.C. D.6.分式方程的解为().A. B. C. D.7.如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.SABCD=4S△AOBB.AC=BDC.AC⊥BDD.ABCD是轴对称图形8.下列各曲线中,表示是的函数是()A. B. C. D.9.在下列各式中,是分式的有()A.2个 B.3个 C.4个 D.5个10.已知菱形ABCD的面积是120,对角线AC=24,则菱形ABCD的周长是()A.52 B.40 C.39 D.2611.一组从小到大排列的数据:a,3,5,5,6(a为正整数),唯一的众数是5,则该组数据的平均数是()A.4.2或4 B.4 C.3.6或3.8 D.3.812.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣1二、填空题(每题4分,共24分)13.在菱形中,,若菱形的面积是,则=____________14.数据﹣2,﹣1,0,3,5的方差是.15.直角三角形两边长为5和12,则此直角三角形斜边上的中线的长是_______.16.在平面直角坐标系中,已知坐标,将线段(第一象限)绕点(坐标原点)按逆时针方向旋转后,得到线段,则点的坐标为____.17.如图如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AECH,如此下去,…,已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3…Sn(n为正整数),那么第818.若,则y_______(填“是”或“不是”)x的函数.三、解答题(共78分)19.(8分)如图,中,是边上一点,,,,点,分别是,边上的动点,且始终保持.(1)求的长;(2)若四边形为平行四边形时,求的周长;(3)将沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,求线段的长.20.(8分)有一个四边形的四边长分别是,且有.求证:此四边形是平行四边形.21.(8分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点N沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△ONC的面积是△OAC面积的时,求出这时点N的坐标.22.(10分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.23.(10分)如图,在菱形中,,点将对角线三等分,且,连接.(1)求证:四边形为菱形(2)求菱形的面积;(3)若是菱形的边上的点,则满足的点的个数是______个.24.(10分)如图,在平行四边形中,、的平分线分别与线段交于点,与交于点.(1)求证:,;(2)若,,,求和的长度.25.(12分)学校新到一批实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟完成;(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?26.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为,,.若,则正方形EFGH的面积为_______.
参考答案一、选择题(每题4分,共48分)1、A【解析】
先把x=1代入y=x+1,得出y=2,则两个一次函数的交点P的坐标为(1,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故选:A.【点睛】考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.2、D【解析】
根据一次函数的图象和性质,由两点坐标分别求出1、2号探测球所在位置的海拔y关于上升时间x的函数关系式,结合图象即可判定结论是否正确.【详解】从图象可知,上升20min时,两个气球都位于海拔25m的高度,故①正确;1号探测气球的图象过设=kx+b,代入点坐标可求得关系式是=x+5(0≤x≤60),同理可求出,2号球的函数解析式为,故②正确;利用图象可以看出,20min后,1号探测气球的图象始终在2号探测气球的图象的上方,而且都随着x的增大而增大,所以当x=50时,两个气球的海拔高度差m有最大值,此时m=,代入x=50,得m=15,故③正确.【点睛】考查了一次函数的图象和性质,一次函数解析式的求法,图象增减性的综合应用,熟记图象和性质特征是解题的关键.3、C【解析】分析:由平行四边形的性质,可得△BOM∽△AOD,可得出OB⊥OM,进而可求解其面积.解:AM、BD相交于点O,在平行四边形ABCD中,可得△BOM∽△AOD,∵点M是BC的中点,即=,、∴==,∵AM=6,BD=12,∴OM=2,OB=4,在△BOM中,22+42=,∴OB⊥OM∴S△ABD=BD•OA=×12×4=24,∴SABCD=2S△ABD=1.故选C.【点评】本题主要考查平行四边形的性质,能够运用相似三角形求解一些简单的计算问题.4、B【解析】
从图2中可看出当x=6时,此时△BPM的面积为0,说明点M一定在BD上,选项中只有点O在BD上,所以点M的位置可能是图1中的点O.【详解】解:∵AB=2,BC=4,四边形ABCD是矩形,∴当x=6时,点P到达D点,此时△BPM的面积为0,说明点M一定在BD上,∴从选项中可得只有O点符合,所以点M的位置可能是图1中的点O.故选:B.【点睛】本题主要考查了动点问题的函数图象,解题的关键是找出当x=6时,此时△BPM的面积为0,说明点M一定在BD上这一信息.5、A【解析】
不等式mx+n>0的解集为直线y=mx+n落在x轴上方的部分对应的x的取值范围是x>-2,根据图象判断即可求解.【详解】解:A、不等式mx+n>0的解集是x>-2,故选项正确;
B、不等式mx+n>0的解集是x<-2,故选项错误;
C、不等式mx+n>0的解集是x>2,故选项错误;
D、不等式mx+n>0的解集是x<2,故选项错误.
故选:A.【点睛】本题考查一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=mx+n的值大于0的自变量x的取值范围.6、C【解析】试题分析:去分母得:x+1=2x,解得:x=1,经检验x=1是分式方程的解.故选C.考点:解分式方程.7、A【解析】
试题分析:A、∵平行四边形ABCD的对角线AC、BD相交于点O,∴AO=CO,DO=BO.∴S△AOD=S△DOC=S△BOC=S△AOB.∴SABCD=4S△AOB,故此选项正确;B、无法得到AC=BD,故此选项错误;C、无法得到AC⊥BD,故此选项错误;D、ABCD是中心对称图形,不是轴对称图形,故此选项错误.故选A.8、B【解析】
对于x的每一个值,y都有唯一的值与它对应,则称y是x的函数,据此观察图象可得.【详解】解:A,C,D曲线,对于每一个x值,都有2个y值与它对应,因此不符合函数的定义,B中一个x对应一个y值,故B曲线表示y是x的函数.故答案为:B【点睛】本题考查了函数的定义,准确把握定义是解题的关键.9、B【解析】
依据分式的定义即可判断.【详解】(x+3)÷(x-1)=,,(x+3)÷(x-1)=,这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故式子中是分式的有3个.故选:B.【点睛】此题考查了分式的定义,熟练掌握分式的定义是解题得到关键.10、A【解析】
先利用菱形的面积公式计算出BD=10,然后根据菱形的性质和勾股定理可计算出菱形的边长=13,从而得到菱形的周长.【详解】∵菱形ABCD的面积是120,即×AC×BD=120,∴BD==10,∴菱形的边长==13,∴菱形ABCD的周长=4×13=1.故选A.【点睛】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积计算可利用平行四边形的面积公式计算,也可利用菱形面积=ab(a、b是两条对角线的长度)进行计算.11、A【解析】
根据题意得出正整数a的值,再根据平均数的定义求解可得.【详解】解:∵数据:a,3,5,5,6(a为正整数),唯一的众数是5,∴a=1或a=2,当a=1时,平均数为:;当a=2时,平均数为:;故选:A.【点睛】本题主要考查了平均数的求法,根据数据是从小到大排列得出a的值是解题的关键.12、D【解析】因为函数与的图象相交于点A(m,2),把点A代入可求出,所以点A(-1,2),然后把点A代入解得,不等式,可化为,解不等式可得:,故选D.二、填空题(每题4分,共24分)13、【解析】
由菱形的性质得AO=CO=6cm,BO=DO,AC⊥BD,由菱形的面积可求BD的长,由勾股定理可求AB的长.【详解】解:如图,∵四边形ABCD是菱形∴AO=CO=6cm,BO=DO,AC⊥BD∵S菱形ABCD=×AC×BD=96∴BD=16cm∴BO=DO=8cm∴AB==10cm故答案为10cm【点睛】本题考查了菱形的性质,掌握菱形的面积公式是解决本题的关键.14、.【解析】
试题分析:先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.解:这组数据﹣2,﹣1,0,3,5的平均数是(﹣2﹣1+0+3+5)÷5=1,则这组数据的方差是:[(﹣2﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2+(5﹣1)2]=;故答案为.15、6或6.5【解析】分类讨论,(1)若斜边为12,则直角三角形斜边上的中线的长是6;(2)若12是直角边,则斜边为13,则直角三角形斜边上的中线的长是6.5;综上述,直角三角形斜边上的中线的长是6或6.5.16、【解析】
根据旋转的性质求出点的坐标即可.【详解】如图,将点B绕点(坐标原点)按逆时针方向旋转后,得到点点的坐标为故答案为:.【点睛】本题考查了坐标点的旋转问题,掌握旋转的性质是解题的关键.17、128【解析】
由题意可以知道第一个正方形的边长为1,第二个正方形的边长为2,第三个正方形的边长为2,就有第n个正方形的边长为2(n-1),再根据正方形的面积公式就可以求出结论.【详解】第一个正方形的面积为1,故其边长为1=20;第二个正方形的边长为2,其面积为2=21;第三个正方形的边长为2,其面积为4=22;第四个正方形的边长为22,其面积为8=23;…第n个正方形的边长为(2)n-1,其面积为2n-1.当n=8时,S8=28-1,=27=128.故答案为:128.【点睛】此题考查正方形的性质,解题关键在于找到规律.18、不是【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应的关系,据此即可判断.【详解】对于x的值,y的对应值不唯一,故不是函数,故答案为:不是.【点睛】本题是对函数定义的考查,熟练掌握函数的定义是解决本题的关键.三、解答题(共78分)19、(1);(2);(3)BP=或3或.【解析】
(1)先根据题意推出△ABE是等腰直角三角形,再根据勾股定理计算即可.(2)首先要推出△CPQ是等腰直角三角形,再根据已知推出各边的长度,然后相加即可.(3)首先证明△BPE∽△CQP,然后分三种情况讨论,分别求解,即可解决问题.【详解】(1)∵四边形ABCD是平行四边形,∴AB=CD,∵BE=CD=3,∴AB=BE=3,又∵∠A=45°,∴∠BEA=∠A=45°,∠ABE=90°,根据勾股定理得AE==;(2)∵四边形ABCD是平行四边形,∴AB=CD,∠A=∠C=45°,又∵四边形ABPE是平行四边形,∴BP∥AB,且AE=BP,∴BP∥CD,∴ED=CP=,∵∠EPQ=45°,∴∠PQC=∠EPQ=45°,∴∠PQC=∠C=45°,∠QPC=90°,∴CP=PQ=,QC=2,∴△CPQ的周长=2+2;(3)解:如图,作BH⊥AE于H,连接BE.∵四边形ABCD是平行四边形,∴AB=CD=3,AD=BC=AE+ED=,∠A=∠C=45°,∴AH=BH=,HE=AD-AH-DE=∴BH=EH,∴∠EBH=∠HEB=∠EBC=45°,∴∠EBP=∠C=45°,∵∠BPQ=∠EPB+∠EPQ=∠C+∠PQC,∠EPQ=∠C,∴∠EPB=∠PQC,∴△BPE∽△CQP.①当QP=QC时,则BP=PE,∴∠EBP=∠BEP=45°,则∠BPE=90°,∴四边形BPEF是矩形,BP=EF=,②当CP=CQ时,则BP=BE=3,③当CP=PQ时,则BE=PE=3,∠BEP=90°,∴△BPE为等腰三角形,∴BP2=BE2+PE2,∴BP=,综上:BP=或3或.【点睛】本题利用平行四边形的性质求解,其中运用了分类讨论的思想,这是解题关键.20、见详解.【解析】
由题意可得出,易得,根据平行四边形的判定定理可得结论.【详解】证明:所以此四边形是平行四边形.【点睛】本题考查了平行四边形的判定,灵活的利用完全平方公式及平方的非负性是解题的关键.21、(1)y=-x+6;(2)12;(3)或.【解析】
(1)利用待定系数法,即可求得函数的解析式;(2)由一次函数的解析式,求出点C的坐标,即OC的长,利用三角形的面积公式,即可求解;(3)当△ONC的面积是△OAC面积的时,根据三角形的面积公式,即可求得N的横坐标,然后分别代入直线OA的解析式,即可求得N的坐标.【详解】(1)设直线AB的函数解析式是y=kx+b,根据题意得:,解得:,∴直线AB的解析式是:y=-x+6;(2)在y=-x+6中,令x=0,解得:y=6,∴;(3)设直线OA的解析式y=mx,把A(4,2)代入y=mx,得:4m=2,解得:,即直线OA的解析式是:,∵△ONC的面积是△OAC面积的,∴点N的横坐标是,当点N在OA上时,x=1,y=,即N的坐标为(1,),当点N在AC上时,x=1,y=5,即N的坐标为(1,5),综上所述,或.【点睛】本题主要考查用待定系数法求函数解析式,根据平面直角坐标系中几何图形的特征,求三角形的面积和点的坐标,数形结合思想和分类讨论思想的应用,是解题的关键.22、(1)60,90;(2)见解析;(3)300人【解析】
(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.23、(1)见解析;(2);(3)1【解析】
(1)根据题意证明△AED≌△AEB≌△CFD≌△CFB,得到四边相等即可证明是菱形;(2)求出菱形的对角线的长,利用菱形的面积等于对角线乘积的一半解决问题即可.(3)不妨假设点P在线段AD上,作点E关于AD的对称点E′,连接FE′交AD于点P,此时PE+PF的值最小.求出PE+PF的最值,判断出在线段AD上存在两个点P满足条件,由此即可判断.【详解】(1)∵四边形ABCD是菱形,∴AD≡AB=CD=CB,∠DAE=∠BAE=∠DCF=∠BCF,∴△AED≌△AEB≌△CFD≌△CFB(SAS)∴DE=BE=DF=BF,∴四边形DEBF为菱形.(2)连接DB,交AC于O,∵四边形ABCD是菱形,∴DB⊥AC,,又∵AE=EF=FC=2,∴AO=3,AD=2DO,∴,∴,∴(3)不妨假设点P在线段AD上,作点E关于AD的对称点E′,连接FE′交AD于点P,此时PE+PF的值最小.易知PE+PF的最小值=2当点P由A运动到D时,PE+PF的值由最大值6减小到2再增加到4,∵PE+PE=,2<<4,∴线段AD上存在两个点P,满足PE+PF=∴根据对称性可知:菱形ABCD的边上的存在1个点P满足条件.故答案为1.【点睛】本题考查菱形的判定和性质,全等三角形的判定和性质,直角三角形的性质,轴对称等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24、(1)证明见解析;(2)的长度为2,的长度为.【解析】
(1)由在平行四边形中,、的平分线分别与线段交于点,易求得,即可得,证得,易证得与是等腰三角形,即可得,,又由,即可证得;(2)由(1)易求得,,即可求得的长;过点作交的延长线于点,易证得四边形为平行四边形,即可得是直角三角形,然后利用勾股定理,即可求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年文山州消防救援局面向社会公开招聘38名政府专职消防员备考题库完整答案详解
- 义乌市属国有企业2025年解说员公开招聘备考题库有答案详解
- 2026年衡水市第七中学教师招聘备考题库及答案详解参考
- 2026年舟山市普陀区海洋经济发展局备考题库指挥中心应急值勤岗位编外工作人员招聘备考题库含答案详解
- 2026年清远市第三中学招聘临聘校医的备考题库完整答案详解
- 2026年黄山市祁门县国有投资集团有限公司招聘备考题库及一套参考答案详解
- 2026年陕西师范大学龙门实验学校教师招聘备考题库完整答案详解
- 祭品行业规范化管理制度
- 会计数字书写规范制度
- 飞行服务站管理制度规范
- 骨科老年患者谵妄课件
- 大学美育课件 第十二章 生态美育
- 美国技术贸易壁垒对我国电子产品出口的影响研究-以F企业为例
- 2025至2030中国电站汽轮机行业项目调研及市场前景预测评估报告
- 《热力管道用金属波纹管补偿器》
- 2025年中国汽轮机导叶片市场调查研究报告
- 中班幼儿户外游戏活动实施现状研究-以绵阳市Y幼儿园为例
- MK6油雾检测器(中文)1
- 采购部门月度汇报
- 靶向阿托品递送系统设计-洞察及研究
- 2025检验科个人年终工作总结
评论
0/150
提交评论