版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市綦江县名校2024届数学八年级下册期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点关于原点对称的点的坐标是A. B. C. D.2.根据《九章算术》的记载中国人最早使用负数,下列四个数中的负数是()A. B. C. D.3.绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m4.下列任务中,适宜采用普查方式的是()A.调查某地的空气质量 B.了解中学生每天的睡眠时间C.调查某电视剧在本地区的收视率 D.了解某一天本校因病缺课的学生数5.一根长为20cm的长方形纸条,将其按照图示的过程折叠,若折叠完成后纸条两端超出点P的长度相等,且PM=PN=5cm,则长方形纸条的宽为()A.1.5cm B.2cm C.2.5cm D.3cm6.从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AD=CD C.AB=BC D.AC=BD7.在中,,则的长为()A.2 B. C.4 D.4或8.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A. B. C. D.9.如图,过正方形的顶点作直线,点、到直线的距离分别为和,则的长为()A. B. C. D.10.下列计算中,正确的是A. B. C. D.11.点3,-4到y轴的距离为()A.3 B.4 C.5 D.-412.如图,▱ABCD中,点O为对角线AC、BD的交点,下列结论错误的是()A.AC=BD B.AB//DCC.BO=DO D.∠ABC=∠CDA二、填空题(每题4分,共24分)13.如图,在正方形外取一点,连接、、.过点作的垂线交于点,连接.若,,下列结论:①;②;③点到直线的距离为;④,其中正确的结论有_____________(填序号)14.直线与轴、轴的交点分别为、则这条直线的解析式为__________.15.如图,在平面直角坐标系中,一次函数y=kx+b和函数y=4xx>0的图象交于A、B两点.利用函数图象直接写出不等式416.如图,正方形OMNP的一个顶点与正方形ABCD的对角线交点O重合,且正方形ABCD、OMNP的边长都是4cm,则图中重合部分的面积是_____cm1.17.一组数据1,2,a,4,5的平均数是3,则这组数据的方差为_____.18.点A(-2,3)关于x轴对称的点B的坐标是_____三、解答题(共78分)19.(8分)已知A.B两地果园分别有苹果30吨和40吨,C.D两地的农贸市场分别需求苹果20吨和50吨。已知从A.B两地到C.D两地的运价如表:(1)填空:若从A果园运到C地的苹果为10吨,则从A果园运到D地的苹果为___吨,从B果园运到C地的苹果为___吨,从B果园运到D地的苹果为___吨,总运输费为___元;(2)如果总运输费为750元时,那么从A果园运到C地的苹果为多少吨?20.(8分)如图,在正方形网格中,每一个小正方形的边长为1.△ABC的三个顶点都在格点上,A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC向右平移6个单位的△A1B1C1,并写出C1的坐标;(3)请画出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.21.(8分)如图,在△ABC中,AB=AC,点,在边上,.求证:.22.(10分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生人,并将条形图补充完整;(2)捐款金额的众数是平均数是中位数为(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?23.(10分)某校八年级学生数学科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元检测期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:m的权重,小张的期末评价成绩为81分,则小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?24.(10分)某校开展“爱我汕头,创文同行”的活动,倡议学生利用双休日参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)抽查的学生劳动时间为1.5小时”的人数为人,并将条形统计图补充完整.(2)抽查的学生劳动时间的众数为小时,中位数为小时.(3)已知全校学生人数为1200人,请你估算该校学生参加义务劳动1小时的有多少人?25.(12分)如图1,已知正方形ABCD的边长为6,E是CD边上一点(不与点C重合),以CE为边在正方形ABCD的右侧作正方形CEFG,连接BF、BD、FD.(1)当点E与点D重合时,△BDF的面积为;当点E为CD的中点时,△BDF的面积为.(2)当E是CD边上任意一点(不与点C重合)时,猜想S△BDF与S正方形ABCD之间的关系,并证明你的猜想;
(3)如图2,设BF与CD相交于点H,若△DFH的面积为,求正方形CEFG的边长.26.如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.
参考答案一、选择题(每题4分,共48分)1、C【解析】
点A(x,y)关于原点的对称点是(-x,-y).【详解】在平面直角坐标系中,点关于原点对称的点的坐标是.故选:C【点睛】本题考核知识点:中心对称和点的坐标.解题关键点:熟记对称的规律.2、C【解析】
将各数化简即可求出答案.【详解】解:A.原式,故A不是负数;B.原式,故B不是负数;C.是负数;
D.原式,故D不是负数;
故选:C.【点睛】本题考查正数与负数,解题的关键是将原数化简,本题属于基础题型.3、D【解析】试题分析:连接OA,根据垂径定理可得AB=2AD,根据题意可得:OA=5m,OD=CD-OC=8-5=3m,根据勾股定理可得:AD=4m,则AB=2AD=2×4=8m.考点:垂径定理.4、D【解析】
调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】A.调查某地的空气质量,由于范围广,应当使用抽样调查,故本选项错误;B.了解中学生每天的睡眠时间,由于人数多,不易全面掌握所有的人,故应当采用抽样调查;C.调查某电视剧在本地区的收视率,人数较多,不便测量,应当采用抽样调查,故本选项错误;D.了解某一天本校因病缺课的学生数,人数少,耗时短,应当采用全面调查的方式,故本选项正确。故选D.【点睛】此题考查全面调查与抽样调查,解题关键在于掌握调查方法.5、B【解析】
设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,除了AP和BM的长度中间的长度为5x,将折叠的纸条展开,根据题意列出方程式求出x的值即可.【详解】解:如图:设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,MN=20由题意可得:5×2+5x=20解得:x=2故选:B.【点睛】本题考查了翻折变换的知识以及学生的动手操作能力,解答本题的关键是仔细观察图形,得到各线段之间存在的关系.6、D【解析】
根据菱形的判定方法结合各选项的条件逐一进行判断即可得.【详解】A、对角线互相垂直的平行四边形是菱形,故A选项不符合题意;B、有一组邻边相等的平行四边形是菱形,故B选项不符合题意;C、有一组邻边相等的平行四边形是菱形,故C选项不符合题意;D、对角线相等的平行四边形是矩形,故D选项符合题意,故选D.【点睛】本题考查了菱形的判定,熟练掌握菱形的判定方法是解答本题的关键.7、D【解析】
分b是斜边、b是直角边两种情况,根据勾股定理计算即可.【详解】解:当b是斜边时,c=,当b是直角边时,c=,则c=4或,故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.8、B【解析】
通过一次函数的定义即可解答.【详解】解:已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,故k>0,即一次函数y=x+k的图象过一二三象限,答案选B.【点睛】本题考查一次函数的定义与性质,熟悉掌握是解题关键.9、A【解析】
先证明△ABE≌△BCF,得到BE=CF=1,在Rt△ABE中利用勾股定理可得AB=2,由此可得AC长.【详解】解:∵四边形ABCD是正方形,
∴AB=AC,∠ABC=90°.
∵∠ABE+∠EAB=90°,∠ABE+∠CBF=90°,
∴∠EAB=∠CBF.
又∠AEB=∠CFB=90°,
∴△ABE≌BCF(AAS).
∴BE=CF=1.
在Rt△ABE中,利用勾股定理可得AB===2.
则AC=AB=2.
故选A.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质,以及勾股定理,解题的关键是通过全等转化线段使其划归于一直角三角形中,再利用勾股定理进行求解.10、D【解析】
根据合并同类项法则、同底数幂除法、积的乘方对各选项分析判断后利用排除法求解.【详解】A.应为x3+x3=2x3,故本选项错误;B.应为a6÷a2=a6﹣2=a4,故本选项错误;C.3a与5b不是同类项,不能合并,故本选项错误;D.(﹣ab)3=﹣a3b3,正确.故选D.【点睛】本题考查了合并同类项,同底数幂的除法,积的乘方的性质,熟练掌握运算性质并灵活运用是解题的关键,不是同类项的一定不能合并.11、A【解析】
根据点到y轴的距离是点的横坐标的绝对值,可得答案.【详解】解:点的坐标(3,-4),它到y轴的距离为|3|=3,故选:A.【点睛】本题考查了点的坐标,点到y轴的距离是点的横坐标的绝对值,点到x轴的距离是点的纵坐标的绝对值.12、A【解析】
根据平行四边形的性质即可判断.平行四边形的对边平行且相等,对角相等,对角线互相平分。【详解】解:∵四边形ABCD是平行四边形,
∴AB∥CD,OB=OD,∠ABC=∠ADC,
∴B、C、D正确,A错误。
故选:A.【点睛】本题考查平行四边形的性质、记住平行四边形的性质是解题的关键,属于中考基础题.二、填空题(每题4分,共24分)13、①②④【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;
②利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;
③过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;
④连接BD,求出△ABD的面积,然后减去△BDP的面积即可。【详解】解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,∴△APD≌△AEB(SAS);
故此选项成立;
②∵△APD≌△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED;
故此选项成立;
③过B作BF⊥AE,交AE的延长线于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,又∴点B到直线AE的距离为故此选项不正确;
④如图,连接BD,在Rt△AEP中,
∵AE=AP=1,又∵△APD≌△AEB,=S正方形ABCD故此选项正确.
∴正确的有①②④,故答案为:①②④【点睛】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.14、y=1x+1.【解析】
把(-1,0)、(0,1)代入y=kx+b得到,然后解方程组可.【详解】解:根据题意得,解得,所以直线的解析式为y=1x+1.故答案为y=1x+1.【点睛】本题考查了待定系数法求一次函数的解析式:设一次函数的解析式为y=kx+b(k、b为常数,k≠0),然后把函数图象上两个点的坐标代入得到关于k、b的方程组,然后解方程组求出k、b,从而得到一次函数的解析式.15、1<x<4【解析】
不等式4x<kx+b(x>0)的解集实际上是反比例函数值小于一次函数值的自变量【详解】解:不等式4x<kx+b(x>0)的解集实际上是反比例函数值小于一次函数值的自变量x的取值范围,根据图象得:1<x<1.
故答案为:1<x<【点睛】本题考查一次函数、反比例函数的图象和性质,理清不等式的解集与两个函数的交点坐标之间的关系是解决问题的关键.16、2.【解析】
根据题意可得:△AOG≌△DOF(ASA),所以S四边形OFDG=S△AOD=S
正方形ABCD,从而可求得其面积.【详解】解:如图,∵正方形ABCD和正方形OMNP的边长都是2cm,
∴OA=OD,∠AOD=∠POM=90°,∠OAG=∠ODF=25°,∴∠AOG=∠DOF,
在△AOG和△DOF中,
∵,
∴△AOG≌△DOF(ASA),
∴S四边形OFDG=S△AOD=S
正方形ABCD=×=2;
则图中重叠部分的面积是2cm1,
故答案为:2.【点睛】本题考查正方形的性质,题中重合的部分的面积是不变的,且总是等于正方形ABCD面积的.17、1【解析】由平均数的公式得:(51+1+x+4+5)÷5=3,
解得x=3;
∴方差=[(1-3)1+(1-3)1+(4-3)1+(3-3)1+(5-3)1]÷5=1;故答案是:1.18、(-2,-3).【解析】根据在平面直角坐标系中,关于x轴对称的两个点的横坐标相同,纵坐标相反即可得出答案.解:点A(-2,3)关于x轴对称的点B的坐标是(-2,-3).故答案为(-2,-3).三、解答题(共78分)19、(1)20,10,30,760;(2)从A果园运到C地的苹果数为5吨【解析】
(1)A地果园有苹果30吨,运到C地的苹果为10吨,则从A果园运到D地的苹果为30-10吨,从B果园运到C地的苹果为20-10吨,从B果园运到D地的苹果为50-20吨,然后计算运输费用;(2)表示出从A到C、D两地,从B到C、D两地的吨数,乘以运价就是总费用;根据总运输费为750元列出方程,求值即可.【详解】(1)从A果园运到D地的苹果为30−10=20(吨),从B果园运到C地的苹果为20−10=10(吨),从B果园运到D地的苹果为50−20=30(吨),总费用为:10×15+20×12+10×10+30×9=760(元),故答案为:20,10,30,760;(2)设从A果园运到C地的苹果数为x吨,则总费用为:15x+(360−12x)+10(20−x)+9×[40−(20−x)]+740由题意得2x+740=750,解得x=5.答:从A果园运到C地的苹果数为5吨。【点睛】此题考查一元一次方程的应用,解题关键在于列出方程20、(1)见解析;(2)见解析;(5,4);(3)见解析;(1,-4).【解析】
(1)根据A、C两点的坐标建立平面直角坐标系即可;
(2)根据图形平移的性质画出△A1B1C1′,然后写出点C1坐标;
(3)分别作出点A、B、C关于原点O的对称点A2、B2、C2,连接A2、B2、C2即可得到△ABC关于原点O对称的△A2B2C2,然后写出点C2坐标.【详解】解:(1)如图,建立平面直角坐标系;(2)如图,△A1B1C1为所作;点C1的坐标为(5,4);(3)如图,△A2B2C2为所作;点C2的坐标为(1,-4).故答案为:(1)见解析;(2)见解析;(5,4);(3)见解析;(1,-4).【点睛】本题考查旋转变换及平移变换,熟知图形经过旋转及平移后与原图形全等是解题的关键.21、见解析【解析】试题分析:证明△ABE≌△ACD即可.试题解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD,∴BD=CE,法2:如图,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF,即BD=CE.22、(1)50人,补图见解析;(2)10,13.1,12.5;(3)132人【解析】分析:(1)由条形统计图中的信息可知,捐款15元的有14人,占被抽查人数的28%,由此可得被抽查学生的总人数为:14÷28%=50(人),由此可得捐款10元的人数为:50-9-14-7-4=16(人),这样即可补全条形统计图了;(2)根据补充完整的条形统计图中的信息进行分析解答即可;(3)由条形统计图中的信息计算出捐款在20元及以上的学生占捐款学生总数的比值,然后由600乘以所得比值即可得到所求结果.详解:(1)由条形统计图和扇形统计图中的信息可得:被抽查学生总数为:14÷28%=50(人),∴捐款10元的人数为:50-9-14-7-4=16(人),由此补全条形统计图如下图所示:(2)由条形统计图中的信息可知:捐款金额的众数是:10元;捐款金额的平均数为:(元);捐款金额的中位数为:(元);(3)根据题意可得:全校捐款20元及以上的人数有:(人).点睛:知道“条形统计图和扇形统计图中相关数据间的关系及众数、中位数和平均数的定义和确定方法”是解答本题的关键.23、(1)80分;(2)小王在期末应该至少考85分才能达到优秀.【解析】分析:(1)小张期末评价成绩=(小张完成作业分+小张的单元检测+小张期末考试分)÷3,
(2)先根据小张期末评价成绩及小张三项成绩求出期末考试成绩的权重.因为期末评价成绩至少80分才是优秀,所以根据题意依据小王的期末评价成绩80分来计算他的期末考试成绩即可.详解:(1)小张的期末评价成绩==80,答:小张的期末评价成绩是80分;(2)依题意得,70×+90×+80×=81解得:m=7,经检查,m=7是所列方程的解.设小王期末考试分数为x,依题意列方程得60×+75×+x=80,解得:x=84≈85,答:小王在期末应该至少考85分才能达到优秀.点睛:本题考查的知识点是平均数和加权平均数的计算,比较基础,注意计算准确.24、(1)40,补图见解析;(2)1.5、1.5;(3)估算该校学生参加义务劳动1小时的有400人.【解析】
(1)根据统计图,先求出总数,再算出劳动时间为1.5小时的人数;(2)根据中位数和众数的定义分析即可;(3)用样本估计总体.【详解】(1)40(2)1.5,1.5(3)1200×30%=400,答:估算该校学生参加义务劳动1小时的有400人。【点睛】本题考核知识点:数据的描述.解题关键点:理解统计的基本定义,从统计图获取信息.25、(1)1,1;(2)S△BDF=S正方形ABCD,证明见解析;(3)2【解析】
(1)根据三角形的面积公式求解;(2)连接CF,通过证明BD∥CF,可得S△BDF=S△BDC=S正方形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030家居建材行业市场前景分析及发展策略与投资管理策略研究报告
- 2025-2030家具家居行业定制化经营投资创新商业模式规划研究
- 2025-2030家具制造行业市场深度解析与未来发展报告
- 2025-2030委内瑞拉锂矿资源领域市场活跃度供需分析及投资风险规划评估研究方案
- 2025-2030委内瑞拉电力产业市场化改革投资机会与风险分析
- 2025-2030增强现实娱乐行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030土库曼斯坦葡萄酒产业可持续发展策略探讨及经济效益评估
- 2025-2030土地产权行业市场深度调研及发展趋势与投资前景研究报告
- 2025-2030图书电商平台分销竞争格局投资现状运营效率发展规划报告
- 2025-2030园林工程行业创新投资策略分析报告
- 四川省成都市2024年七年级上学期期末数学模拟试卷6套【附参考答案】
- 消化内科危重患者护理
- JTG D30-2015 公路路基设计规范
- 单位委托物业管理合同范本
- 访问控制与审计监控课件
- 宝石烧制瓷器工艺
- 闲置资产盘活利用方案
- 12345工作总结个人
- 高中地理第一学期期中试卷湘教版必修1
- 测定直流电源的参数并研究其输出特性
- 2021年云南公务员考试行测试题及答案
评论
0/150
提交评论