2024年湖南省邵阳市大祥区数学八年级下册期末监测模拟试题含解析_第1页
2024年湖南省邵阳市大祥区数学八年级下册期末监测模拟试题含解析_第2页
2024年湖南省邵阳市大祥区数学八年级下册期末监测模拟试题含解析_第3页
2024年湖南省邵阳市大祥区数学八年级下册期末监测模拟试题含解析_第4页
2024年湖南省邵阳市大祥区数学八年级下册期末监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年湖南省邵阳市大祥区数学八年级下册期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列式子中,可以取和的是()A. B. C. D.2.菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.103.如图,点为正方形内一点,,,连结,那么的度数是()A. B. C. D.4.函数中自变量x的取值范围是()A. B. C. D.5.通过估算,估计的大小应在()A.7~8之间 B.8.0~8.5之间C.8.5~9.0之间 D.9~10之间6.如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为()A.6 B.5 C.4 D.37.(2016山西省)宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH8.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是()A.1 B.2 C.3 D.9.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程S(千米)与时刻①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是()A.1 B.2 C.3 D.410.如图,点A是直线l外一点,在l上取两点B、C,分别以点A、C为圆心,以BC、AB的长为半径画弧,两弧交于点D,分别连接AD、CD,得到的四边形ABCD是平行四边形.根据上述作法,能判定四边形ABCD是平行四边形的条件是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.两组对角分别相等的四边形是平行四边形D.两组对边分别相等的四边形是平行四边形二、填空题(每小题3分,共24分)11.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为______.12.分解因式:x3-9x13.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是____小时.14.计算:=_____;|﹣|=_____.15.使得分式值为零的x的值是_________;16.如图,在矩形中,于点,对角线、相交于点,且,,则__________.17.直角三角形两条边的长度分别为3cm,4cm,那么第三条边的长度是_____cm.18.在四边形中,给出下列条件:①②③④其中能判定四边形是平行四边形的组合是________或________或_________或_________.三、解答题(共66分)19.(10分)先化简,再求值:(x+2)2﹣4x(x+1),其中x=2.20.(6分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是_____米(平面镜的厚度忽略不计).21.(6分)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.22.(8分)如图,已知ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:BE=AD;(2)求∠BFD的度数.23.(8分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长为个单位长度的正方形).(1)将沿轴方向向左平移个单位,画出平移后得到的;(2)将绕着点顺时针旋转,画出旋转后得到的.24.(8分)甲、乙两名同学进入八年级后,某科6次考试成绩如图所示:平均数方差中位数众数甲7575乙33.370(1)请根据统计图填写上表:(2)请你分别从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析:①从平均数和方差相结合看,你得出什么结论;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?25.(10分)解不等式组,并将不等式组的解集在下面的数轴上表示出来:.26.(10分)已知:如图,在四边形中,,为对角线的中点,为的中点,为的中点.求证:

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据分式有意义的条件和二次根式有意义的条件逐项分析即可.【详解】A.当x=2时,x-2=0,此时无意义,故不符合题意;B.当x=3时,x-3=0,此时无意义,故不符合题意;C.当x=2时,x-2=0;x=3时,x-2>0,此时有意义,故符合题意;D.当x=2时,x-3=-1<0,此时无意义,故不符合题意;故选C.【点睛】本题考查了分式和二次根式有意义的条件,当分式的分母不等于0时,分式有意义;当被开方式是非负数时,二次根式有意义.2、B【解析】试题分析:解方程可得:y=2或y=5,当边长为2时,对角线为6就不成立;则边长为5,则周长为20.考点:(1)、菱形的性质;(2)、方程的解3、C【解析】

由正方形的性质得到AD=CD,根据等腰三角形的性质得到∠DAE=∠AED=70°,求得∠ADE=180°-70°-70°=40°,得到∠EDC=50°,根据等腰三角形的性质即可得到结论.【详解】解:,,,四边形是正方形,,,,,,,故选:.【点睛】本题考查了正方形的性质,等腰三角形的性质,熟练掌握正方形的性质是解题的关键.4、B【解析】

根据二次根式中的被开方数非负数的性质进行计算,即可得到答案.【详解】由二次根式中的被开方数非负数的性质可得,则,故选择B.【点睛】本题考查函数自变量的取值范围,解题的关键是知道二次根式中的被开方数非负数.5、C【解析】

先找到所求的无理数在哪两个和它接近的有理数之间,然后判断出所求的无理数的范围.【详解】解:∵64<1<81,∴89,排除A和D,又∵8.52=72.25<1.故选C.6、C【解析】

连接EG、FG,根据斜边中线长为斜边一半的性质即可求得EG=FG=BC,因为D是EF中点,根据等腰三角形三线合一的性质可得GD⊥EF,再根据勾股定理即可得出答案.【详解】解:连接EG、FG,EG、FG分别为直角△BCE、直角△BCF的斜边中线,∵直角三角形斜边中线长等于斜边长的一半∴EG=FG=BC=×10=5,∵D为EF中点∴GD⊥EF,即∠EDG=90°,又∵D是EF的中点,∴,在中,,故选C.【点睛】本题考查了直角三角形中斜边上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GD⊥EF是解题的关键.7、D【解析】

先根据正方形的性质以及勾股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形.【详解】解:设正方形的边长为2,则CD=2,CF=1

在直角三角形DCF中,∴矩形DCGH为黄金矩形

故选:D.【点睛】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比是的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形.8、C【解析】

根据平移的性质即可解答.【详解】如图连接,根据平行线的性质得到∠1=∠2,如图,平移的距离的长度故选C.【点睛】此题考查平移的性质,解题关键在于利用平移的性质求解.9、C【解析】试题分析:根据函数的图像直接读取信息:①乙比甲晚出发1小时,正确;②乙应出发2小时后追上甲,错误;③甲的速度为12÷3=4(千米/小时),正确;甲到达需要20÷4=5(小时);乙的速度为12÷2=6(千米/小时),SI④乙到达需要的时间为20÷6=313(小时),即乙在甲出发41故选C考点:一次函数的图像与性质10、D【解析】

根据题意可知,即可判断.【详解】由题意可知:,根据两组对边分别相等可以判定这个四边形为平行四边形.故选:D【点睛】本题考查了平行四边形的判定,熟知两组对边分别相等的四边形是平行四边形是解题关键.二、填空题(每小题3分,共24分)11、75°【解析】

根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.【详解】∵∠ACB=90°,

∴∠MCD=90°,

∵∠D=60°,

∴∠DMC=30°,

∴∠AMF=∠DMC=30°,

∵∠A=45°,

∴∠1=∠A+∠AMF=45°+30°=75°,

故选:C.【点睛】本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF的度数.12、x【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,先提取公因式x后继续应用平方差公式分解即可:x213、6.4【解析】试题分析:体育锻炼时间=(小时).考点:加权平均数.14、【解析】

根据二次根式的分母有理化和二次根式的性质分别计算可得.【详解】=,|-|==2,故答案为:,2.【点睛】本题主要考查二次根式的分母有理化,解题的关键是掌握二次根式的有理化方法和二次根式的性质.15、2【解析】

根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.【详解】解:要使分式有意义则,即要使分式为零,则,即综上可得故答案为2【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0.16、【解析】

由矩形的性质可得AO=CO=BO=DO,可证△ABE≌△AOE,可得AO=AB=BO=DO,由勾股定理可求AE的长.【详解】在矩形中,AO=CO=BO=DO∵,,∴BE=EO∵AE⊥BD∴垂直平分.∴AB=AO∴AB=AO=BO∴为等边三角形.∴∠BAO=60°∵AE⊥BD∴∠BAE=30°∴,∴.故答案为:【点睛】本题考查了矩形的性质,等边三角形的判定和性质,熟练运用矩形的性质是本题的关键.17、5或【解析】

利用分类讨论的思想可知,此题有两种情况:一是当这个直角三角形的两直角边分别为、时;二是当这个直角三角形的一条直角边为,斜边为.然后利用勾股定理即可求得答案.【详解】当这个直角三角形的两直角边分别为、时,则该三角形的斜边的长为:(),当这个直角三角形的一条直角边为,斜边为时,则该三角形的另一条直角边的长为:().故答案为或.【点睛】此题主要考查学生对勾股定理的理解和掌握,注意分类讨论是解题关键.18、①③①④②④③④【解析】

根据平行四边形的判定定理确定即可.【详解】解:如图,①③:,,四边形是平行四边形(两组对边分别平行的四边形是平行四边形);①④:,,四边形是平行四边形(两组对边分别平行的四边形是平行四边形);②④:,,四边形是平行四边形(一组对边平行且相等的四边形是平行四边形);③④:,四边形是平行四边形(两组对边分别平行的四边形是平行四边形);所以能判定四边形是平行四边形的组合是①③或①④或②④或③④.故答案为:①③或①④或②④或③④.【点睛】本题考查了平行四边形的判定定理,一组对边平行且相等的四边形是平行四边形;两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形,灵活选用条件及合适的判定定理是解题的关键.三、解答题(共66分)19、原式=﹣3x1+4,当x=2时,原式=﹣1.【解析】试题分析:原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.试题解析:原式=x1+4x+4﹣4x1﹣4x=﹣3x1+4,当x=2时,原式=﹣6+4=﹣1.考点:整式的化简求值.20、1【解析】试题分析:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==1(米).故答案为1.考点:相似三角形的应用.21、(1)证明见解析;(2)①菱形BFEP的边长为cm;②点E在边AD上移动的最大距离为2cm.【解析】

(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD﹣DE=4cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=即可;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=4cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.【详解】(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵点B与点E关于PQ对称,∴CE=BC=5cm,在Rt△CDE中,DE==4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm;在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=,∴菱形BFEP的边长为;②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.【点睛】本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识;本题综合性强,有一定难度.22、(1)见解析;(2)60°【解析】

(1)根据等边三角形的性质可得AB=AC,∠BAC=∠C=60°,然后根据SAS可证△ABE≌△CAD,再根据全等三角形的性质即得结论;(2)由全等三角形的性质可得∠ABE=∠CAD,然后根据三角形的外角性质和角的和差即可得出结果.【详解】解:(1)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,又∵AE=CD,∴△ABE≌△CAD(SAS),∴BE=AD;(2)∵△ABE≌△CAD,∴∠ABE=∠CAD,∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°.【点睛】本题考查了等边三角形的性质、三角形的外角性质以及全等三角形的判定和性质,属于常考题型,熟练掌握上述基本知识是解题的关键.23、(1)见解析;(1)见解析。【解析】

(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;

(1)利用网格特点和旋转的性质画出点B、C的对应点B1、C1,从而得到△AB1C1.【详解】解:(1)如图,△A1B1C1即为所求;

(1)如图,△AB1C1即为所求.

【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.24、(1)见解析;(2)①见解析;②见解析.【解析】

(1)从折线统计图中读取甲、乙两人六次成绩并按照从大到小的顺序重新排列,甲:60、65、75、75、80、95,乙:70、70、70、75、80,85,根据平均数、众数、中位数、方差等概念分别算出甲的众数、方差,乙的平均数、中位数,再将题中表格填充完整即可;(2)①按照方差的意义即方差描述波动程度来解答即可;②从折线统计图的走向趋势来分析即可得出答案.【详解】(1)由图可知:甲的六次考试成绩分别为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论