2024年江苏省泰兴市黄桥初级中学八年级数学第二学期期末质量跟踪监视模拟试题含解析_第1页
2024年江苏省泰兴市黄桥初级中学八年级数学第二学期期末质量跟踪监视模拟试题含解析_第2页
2024年江苏省泰兴市黄桥初级中学八年级数学第二学期期末质量跟踪监视模拟试题含解析_第3页
2024年江苏省泰兴市黄桥初级中学八年级数学第二学期期末质量跟踪监视模拟试题含解析_第4页
2024年江苏省泰兴市黄桥初级中学八年级数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年江苏省泰兴市黄桥初级中学八年级数学第二学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在点中,一次函数y=kx+2(k<0)的图象不可能经过的点是()A. B. C. D.2.某市为解决部分市民冬季集中取暖问题,需铺设一条长4000米的管道,为尽量减少施工对交通造成的影响,施工时“…”,设实际每天铺设管道x米,则可得方程=20,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期20天完成B.每天比原计划少铺设10米,结果延期20天完成C.每天比原计划多铺设10米,结果提前20天完成D.每天比原计划少铺设10米,结果提前20天完成3.正十边形的每一个内角的度数为()A.120° B.135° C.140° D.144°4.周长为4cm的正方形对角线的长是()A.42cm B.22cm5.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.256.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)中正确的有A.4个 B.3个 C.2个 D.1个7.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是()A.六边形 B.八边形 C.十二边形 D.十六边形8.下列运算正确的是()A. B. C. D.2mm=2m9.如图,正方形ABCD,点E、F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5,AE=1,CF=2,则BG的长为()A. B.5 C. D.10.分式1x+2有意义,xA.x≠2 B.x≠﹣2 C.x=2 D.x=﹣211.如果关于x的一次函数y=(a+1)x+(a﹣4)的图象不经过第二象限,且关于x的分式方程有整数解,那么整数a值不可能是()A.0 B.1 C.3 D.412.一个正比例函数的图象经过(1,﹣3),则它的表达式为()A.y=﹣3x B.y=3x C.y=-3x D.y=﹣二、填空题(每题4分,共24分)13.已知,,则=______。14.在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.15.如图,在Rt△ABC中,AC=8,BC=6,直线l经过点C,且l∥AB,P为l上一个动点,若△ABC与△PAC相似,则PC=.16.若分式x-1x+1的值为零,则x的值为17.用反证法证明:“四边形中至少有一个角是直角或钝角”时,应假设________.18.一个多边形的每个外角都是,则这个多边形的边数是________.三、解答题(共78分)19.(8分)如图,在矩形中,.(1)请用尺规作图法,在矩形中作出以为对角线的菱形,且点分别在上.(不要求写作法,保留作图痕迹)(2)在(1)的条件下,求菱形的边长.20.(8分)如图所示,P(a,3)是直线y=x+5上的一点,直线y=k1x+b与双曲线相交于P、Q(1,m).(1)求双曲线的解析式及直线PQ的解析式;(2)根据图象直接写出不等式>k1x+b的解集.(3)若直线y=x+5与x轴交于A,直线y=k1x+b与x轴交于M求△APQ的面积21.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为:A(1,1),B(3,2),C(1,4).(1)将△ABC先向下平移4个单位,再向右平移1个单位,画出第二次平移后的△A1B1C1.若将△A1B1C1看成是△ABC经过一次平移得到的,则平移距离是________.(2)以原点为对称中心,画出与△ABC成中心对称的△A2B2C2.22.(10分)如图,A,B是直线y=x+4与坐标轴的交点,直线y=-2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A—B—C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由23.(10分)计算(1)()-()(2)(2+3)(2-3)24.(10分)为鼓励节约用电,某地用电收费标准规定:如果每月每户用电不超过150度,那么每度电0.5元;如果该月用电超过150度,那么超过部分每度电0.8元.(1)如果小张家一个月用电128度,那么这个月应缴纳电费多少元?(2)如果小张家一个月用电a度,那么这个月应缴纳电费多少元?(用含a的代数式表示)(3)如果这个月缴纳电费为147.8元,那么小张家这个月用电多少度?25.(12分)已知:一次函数的图像经过点A(-1,2)和点B(0,4).(1)求这个一次函数的表达式;(2)请你画出平面直角坐标系,并作出本题中的一次函数的图像.26.甲骑自行年,乙乘坐汽车从A地出发沿同一路线匀速前往B地,甲先出发.设甲行驶的时间为x(h),甲、乙两人距出发点的路程S甲(km)、S乙(km)关于x的函数图象如图1所示,甲、乙两人之同的距离y(km)关于x的函数图象如图2所示,请你解决以下问题:(1)甲的速度是__________km/h,乙的速度是_______km/h;(2)a=_______,b=_______;(3)甲出发多少时间后,甲、乙两人第二次相距7.5km?

参考答案一、选择题(每题4分,共48分)1、D【解析】

由条件可判断出直线所经过的象限,再进行判断即可.【详解】解:∵在y=kx+2(k<0)中,令x=0可得y=2,

∴一次函数图象一定经过第一、二象限,

∵k<0,

∴y随x的增大而减小,

∴一次函数不经过第三象限,

∴其图象不可能经过Q点,

故选:D.【点睛】本题主要考查一次函数的图象,利用k、b的正负判断一次函数的图象位置是解题的关键,即在y=kx+b中,①k>0,b>0,直线经过第一、二、三象限,②k>0,b<0,直线经过第一、三、四象限,③k<0,b>0,直线经过第一、二、四象限,④k<0,b<0,直线经过第二、三、四象限.2、C【解析】

由给定的分式方程,可找出缺失的条件为:每天比原计划多铺设10米,结果提前20天完成.此题得解.【详解】解:∵利用工作时间列出方程:,∴缺失的条件为:每天比原计划多铺设10米,结果提前20天完成.故选:C.【点睛】本题考查了由实际问题抽象出分式方程,由列出的分式方程找出题干缺失的条件是解题的关键.3、D【解析】∵一个正十边形的每个外角都相等,∴正十边形的一个外角为360÷10=36°.∴每个内角的度数为180°–36°=144°;故选D.4、D【解析】

先根据正方形的性质得到正方形的边长为1cm,然后根据勾股定理得到正方形对角线的长.【详解】解:∵正方形的周长为4cm,∴正方形的边长为1cm,∴正方形的对角线的长为12+12故选:D.【点睛】本题考查了正方形的性质和勾股定理,根据正方形的四条边相等得出直角三角形的两直角边长是解决此题的关键.5、A【解析】

解:利用勾股定理可得:,故选A.6、B【解析】

根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,

利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF=S△DAE,则S△ABF-S△AOF=S△DAE-S△AOF,即S△AOB=S四边形DEOF.【详解】解:∵四边形ABCD为正方形,

∴AB=AD=DC,∠BAD=∠D=90°,

而CE=DF,

∴AF=DE,

在△ABF和△DAE中

∴△ABF≌△DAE,

∴AE=BF,所以(1)正确;

∴∠ABF=∠EAD,

而∠EAD+∠EAB=90°,

∴∠ABF+∠EAB=90°,

∴∠AOB=90°,

∴AE⊥BF,所以(2)正确;

连结BE,

∵BE>BC,

∴BA≠BE,

而BO⊥AE,

∴OA≠OE,所以(3)错误;

∵△ABF≌△DAE,

∴S△ABF=S△DAE,

∴S△ABF-S△AOF=S△DAE-S△AOF,

∴S△AOB=S四边形DEOF,所以(4)正确.

故选B.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.7、B【解析】

由平面图形的折叠及立体图形的表面展开图的特点解结合实际操作解题.【详解】解:此题需动手操作,可以通过折叠再减去4个重合,得出是八边形.故选:B.【点睛】本题主要考查了与剪纸相关的知识:动手操作的能力是近几年常考的内容,要掌握熟练.8、C【解析】A.,错误;B.,错误;C.,正确;D.,错误.故选C.9、C【解析】

如图,连接BE、BF.首先利用勾股定理求出EF,再根据S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,列出方程即可解决问题.【详解】如图,连接BE、BF.∵四边形ABCD是正方形,∴AB=BC=CD=AD=5,∵AE=1,CF=2,∴DE=4,DF=3,∴EF==5,∵S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,∴•5•BG=25-•5•1-•5•2-•3•4,∴BG=,故选C.【点睛】本题考查正方形的性质、勾股定理,三角形的面积等知识,解题的关键是学会添加常用辅助线,学会利用分割法求三角形面积,学会构建方程解决问题,属于中考常考题型.10、B【解析】

分式中,分母不为零,所以x+2≠0,所以x≠-2【详解】解:因为1x+2有意义,所以x+2≠0,所以x≠-2,所以选【点睛】本题主要考查分式有意义的条件11、B【解析】

依据关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限的数,求得a的取值范围,依据关于x的分式方程有整数解,即可得到整数a的取值.【详解】解:∵关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限,

∴a+2>0,a-2≤0,

解得-2<a≤2.

∵+2=,

∴x=,

∵关于x的分式方程+2=有整数解,

∴整数a=0,2,3,2,

∵a=2时,x=2是增根,

∴a=0,3,2

综上,可得,满足题意的a的值有3个:0,3,2,

∴整数a值不可能是2.

故选B.【点睛】本题考查了一次函数的图象与系数的关系以及分式方程的解.注意根据题意求得使得关于x的分式方程有整数解,且关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限的a的值是关键.12、A【解析】

设正比例函数解析式为y=kx(k≠0),然后将点(1,-3)代入该函数解析式即可求得k的值.【详解】设正比例函数解析式为y=kx(k≠0).则根据题意,得﹣3=k,解得k=﹣3∴正比例函数的解析式为:y=﹣3x故选A.【点睛】本题考查了待定系数法求正比例函数解析式.此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.二、填空题(每题4分,共24分)13、60【解析】

=2ab(a+b),将a+b=3,ab=10,整体带入即可.【详解】=2ab(a+b)=2×3×10=60.【点睛】本题主要考查利用提公因式法分解因式,整体带入是解决本题的关键.14、55°或35°.【解析】试题分析:①若E在AD上,如图,∵BE是AD边上的高,∠EBD=20°,∴∠ADB=90°﹣20°=70°,∵AD=BD,∴∠DAB=∠ABD=55°;②若E在AD的延长线上,如图,∵BE是AD边上的高,∠EBD=20°,∴∠EDB=90°﹣20°=70°,∵AD=BD,∴∠DAB=∠ABD=35°.故答案为55°或35°.考点:1.平行四边形的性质;2.分类讨论.15、6.1或2【解析】分类讨论:(1)当∠PCA=90°时,不成立;(2)∵Rt△ABC中,AC=8,BC=6,∴AB=2,当∠APC=90°时,∵∠PCA=∠CAB,∠APC=∠ACB,∴△CPA∽△ACB,∴=,∴=,∴PC=6.1.(3)当∠CAP=90°时,∵∠ACB=∠CAP=90°,∠PCA=∠CAB,∴△PCA∽△BAC,∴=,∴PC=AB=2.故答案为:6.1或2.点睛:(1)求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形,根据未知三角形中已知边与已知三角形的可能对应分类讨论;(2)或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小;(3)若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式表示各边的长度,之后利用相似列方程求解.16、1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.17、四边形中所有内角都是锐角.【解析】

反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:四边形中所有内角都是锐角.故答案为:四边形中所有内角都是锐角.【点睛】本题考查了反证法,解答此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.18、【解析】

正多边形的外角和是360°,而每个外角是18°,即可求得外角和中外角的个数,即多边形的边数.【详解】设多边形边数为n,于是有18°×n=360°,解得n=20.即这个多边形的边数是20.【点睛】本题考查多边形内角和外角,熟练掌握多边形的性质及计算法则是解题关键.三、解答题(共78分)19、(1)见解析;(2)菱形的边长为.【解析】

(1)连接BD,作BD的垂直平分线交AD、BC与E、F,点E、F即为所求的点;(2)设ED=x,则BE=x,AE=5-x,在Rt△ABE中利用勾股定理可以算出x的值即可.【详解】(1)连接BD,作BD的垂直平分线交AD、BC与E、F,连接BE,DF即可,如图,菱形即为所求.(2)设的长为,∵,∴,∴在中,,即,解得,即菱形的边长为.【点睛】此题主要考查了菱形的判定与性质,以及勾股定理的应用,关键是正确画出图形,熟练掌握菱形的判定方法.20、(1)双曲线的解析式为,线PQ的解析式为:;(2)-2<x<0或x>-1;(3)△APQ的面积为【解析】

试题分析:(1)利用代入法求出a的值,然后根据交点可求出m的值,从而求出解析式;(2)根据图像可直接求解出取值范围;(3)分别求出交点,利用割补法求三角形的面积即可.试题解析:(1)把代入中得∴p(-2,3)把代入中,得k=-6∴双曲线解析式为把代入中,得m=-3∴a(1,-6)把时,,时,代入得:∴直线pa解析式为:②-2<x<0或x>-1③在与中,y=0解设x=-1∴M(-1,0)∴==∴△APO面积为【详解】请在此输入详解!21、(1),见解析;(2)见解析.【解析】

(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可,再利用勾股定理列式计算即可得解;

(2)根据网格结构找出点A、B、C以原点为对称中心的对称点A2、B2、C2的位置,然后顺次连接即可.【详解】解:(1)△A1B1C1如图所示,平移距离为:=;故答案为:.(2)如(1)图中所作.【点睛】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.22、(1)A(-4,0);B(0,4);C(2,0);(2)①点E的位置见解析,E(,0);②D点的坐标为(-1,3)或(,)【解析】

(1)先利用一次函数图象上点的坐标特点求得点A、B的坐标;然后把B点坐标代入y=−2x+b求出b的值,确定此函数解析式,然后再求C点坐标;

(2)①根据轴对称—最短路径问题画出点E的位置,由待定系数法确定直线DB1的解析式为y=−3x−4,易得点E的坐标;

②分两种情况:当点D在AB上时,当点D在BC上时.当点D在AB上时,由等腰直角三角形的性质求得D点的坐标为(−1,3);当点D在BC上时,设AD交y轴于点F,证△AOF与△BOC全等,得OF=2,点F的坐标为(0,2),求得直线AD的解析式为,与y=−2x+4组成方程组,求得交点D的坐标为(,).【详解】(1)在y=x+4中,令x=0,得y=4,令y=0,得x=-4,∴A(-4,0),B(0,4)把B(0,4)代入y=-2x+b,得b=4,∴直线BC为:y=-2x+4在y=-2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)①如图∵点D是AB的中点∴D(-2,2)点B关于x轴的对称点B1的坐标为(0,-4),设直线DB1的解析式为,把D(-2,2),B1(0,-4)代入,得,解得k=-3,b=-4,∴该直线为:y=-3x-4,令y=0,得x=,∴E点的坐标为(,0).②存在,D点的坐标为(-1,3)或(,).当点D在AB上时,∵OA=OB=4,∴∠BAC=45°,∴△ACD是以∠ADC为直角的等腰直角三角形,∴点D的横坐标为,当x=-1时,y=x+4=3,∴D点的坐标为(-1,3);当点D在BC上时,如图,设AD交y轴于点F.∵∠FAO+∠AFO=∠CBO+∠BFD,∠AFO=∠BFD,∴∠FAO=∠CBO,又∵AO=BO,∠AOF=∠BOC,∴△AOF≌△BOC(ASA)∴OF=OC=2,∴点F的坐标为(0,2),设直线AD的解析式为,将A(-4,0)与F(0,2)代入得,解得,∴,联立,解得:,∴D的坐标为(,).综上所述:D点的坐标为(-1,3)或(,)【点睛】本题是一次函数的综合题,难度适中,考查了利用待定系数法求一次函数的解析式、轴对称的最短路径问题、直角三角形问题,第(2)②题采用了分类讨论的思想,与三角形全等结合,解题的关键是灵活运用一次函数的图象与性质以及全等的知识.23、(1);(2)-1.【解析】

(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算.【详解】(1)原式==;(2)原式=8-9=-1.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.24、(1)这个月应缴纳电费64元;(2)如果小张家一个月用电a度,那么这个月应缴纳电费(0.8a-45)元;(3)如果这个月缴纳电费为147.8元,那么小张家这个月用电1度.【解析】

(1)如果小张家一个月用电128度.128<150,所以只有一种情况,每度电0.5元,可求解.(2)a>150,两种情况都有,先算出128度电用的钱,再算出剩下的(a﹣128)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论