2024年云南省昆明市数学八年级下册期末检测试题含解析_第1页
2024年云南省昆明市数学八年级下册期末检测试题含解析_第2页
2024年云南省昆明市数学八年级下册期末检测试题含解析_第3页
2024年云南省昆明市数学八年级下册期末检测试题含解析_第4页
2024年云南省昆明市数学八年级下册期末检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年云南省昆明市数学八年级下册期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点H,则图中△AHC′的面积等于()A.12﹣63 B.14﹣63 C.18﹣63 D.18+632.如图,等边△ABC的边长为6,点O是三边垂直平分线的交点,∠FOG=120°,∠FOG的两边OF,OG分别交AB,BC与点D,E,∠FOG绕点O顺时针旋转时,下列四个结论正确的是()①OD=OE;②;③;④△BDE的周长最小值为9,A.1个 B.2个 C.3个 D.4个3.一次函数y=x+2的图象与y轴的交点坐标为()A.(0,2) B.(0,﹣2) C.(2,0) D.(﹣2,0)4.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队 B.6队 C.5队 D.4队5.如图,在四边形ABCD中,∠A=90°,AB=3,,点M、N分别为线段BC、AB上的动点,点E、F分别为DM、MN的中点,则EF长度的最大值为()A.2 B.3 C.4 D.6.如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交边于点.若点为边的中点,点为线段EF上一动点,则周长的最小值为()A. B. C. D.7.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣28.下面是任意抛掷一枚质地均匀的正六面体骰子所得结果,其中发生的可能性很大的是()A.朝上的点数为 B.朝上的点数为C.朝上的点数为的倍数 D.朝上的点数不小于9.下列图形中,是轴对称图形的是()A. B. C. D.10.如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16- B.-12+ C.8- D.4-11.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B. C. D.212.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④二、填空题(每题4分,共24分)13.如图,在菱形ABCD中,AC、BD交于点O,BC=5,若DE∥AC,CE∥BD,则OE的长为_____.14.如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差S甲2、S乙2的大小:S甲2____S乙2(填“>”、“<”或“=”)15.在△ABC中,AB=10,CA=8,BC=6,∠BAC的平分线与∠BCA的平分线交于点I,且DI∥BC交AB于点D,则DI的长为____.16.分式x2-9x+3的值为0,那么x17.如图,在平面直角坐标系xOy中,直线l1:y=mx-2与直线l2:y=x+n相交于点P,则关于x,y的二元一次方程组18.在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8,S四边形ABCD=16,那么对角线BD=______.三、解答题(共78分)19.(8分)(1)已知y﹣2与x成正比例,且x=2时,y=﹣1.①求y与x之间的函数关系式;②当y<3时,求x的取值范围.(2)已知经过点(﹣2,﹣2)的直线l1:y1=mx+n与直线l2:y2=﹣2x+1相交于点M(1,p)①关于x,y的二元一次方程组的解为;②求直线l1的表达式.20.(8分)随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):数据段频数频率30~40100.0540~503650~600.3960~7070~80200.10总计2001注:30~40为时速大于等于30千米而小于40千米,其他类同(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?21.(8分)化简:÷(a-4)-.22.(10分)为了维护国家主权和海洋权力,海监部门对我国领海实行常态化巡航管理,如图,正在执行巡航任务的海监船以每小时30海里的速度向正东方航行,在处测得灯塔在北偏东60°方向上,继续航行后到达处,此时测得灯塔在北偏东30°方向上.(1)求的度数;(2)已知在灯塔的周围15海里内有暗礁,问海监船继续向正东方向航行是否安全?23.(10分)已知,,是的三边,且满足,试判断的形状,并说明理由.24.(10分)某书店以每本21元的价格购进一批图书,若每本图书售价a元,则每周可卖出(350﹣10a)件,但物价局限定每本图书的利润率不得超过20%,该书店计划“五一”黄金周要盈利400元.问需要购进图书多少本?25.(12分)已知关于的一元二次方程.(1)求证:无论取何实数,该方程总有两个不相等的实数根;(2)若方程的一根为3,求另一个根.26.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用的材料.(1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排制作甲种边框多少个(不计材料损耗)?

参考答案一、选择题(每题4分,共48分)1、C【解析】

如图,首先运用旋转变换的性质证明∠B'AH=30°,此为解决问题的关键性结论;运用直角三角形的边角关系求出B'H的长度,进而求出△AB'H的面积,即可解决问题.【详解】如图,由题意得:∠CAC'=15°,∴∠B'AH=45°﹣15°=30°,∴B'H=6÷3=6×33=23,∴S△AB'H=12×6×23=63故选C.【点睛】本题考查了旋转变换的性质、勾股定理、三角形的面积公式等几何知识点及其应用问题;牢固掌握旋转变换的性质、勾股定理、三角形的面积公式等几何知识点是灵活运用、解题的基础和关键.2、B【解析】

连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用S△BOD=S△COE得到四边形ODBE的面积=S△ABC=,则可对③进行判断;作OH⊥DE,如图,则DH=EH,计算出S△ODE=OE2,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=6+DE=OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【详解】解:连接OB、OC,如图,

∵△ABC为等边三角形,

∴∠ABC=∠ACB=60°,

∵点O是等边△ABC的内心,

∴OB=OC,OB、OC分别平分∠ABC和∠ACB,

∴∠ABO=∠OBC=∠OCB=30°,

∴∠BOC=120°,即∠BOE+∠COE=120°,

而∠DOE=120°,即∠BOE+∠BOD=120°,

∴∠BOD=∠COE,

在△BOD和△COE中,,∴△BOD≌△COE(ASA),

∴BD=CE,OD=OE,①正确;

∴S△BOD=S△COE,

∴四边形ODBE的面积=S△OBC=S△ABC=××62=,③错误作OH⊥DE,如图,则DH=EH,

∵∠DOE=120°,

∴∠ODE=∠OEH=30°,

∴OH=OE,HE=OH=OE,

∴DE=OE,

∴S△ODE=•OE•OE=OE2,

即S△ODE随OE的变化而变化,

而四边形ODBE的面积为定值,

∴S△ODE≠S△BDE;②错误;

∵BD=CE,

∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=6+DE=6+OE,

当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,

∴△BDE周长的最小值=6+3=9,④正确.

故选B.【点睛】本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质以及三角形面积的计算等知识;熟练掌握旋转的性质和等边三角形的性质,证明三角形全等是解题的关键.3、A【解析】分析:在解析式中,令y=0,即可求得与x轴交点的坐标了.详解:当y=0时,x+2=0,解得x=−2,所以一次函数的图象与x轴的交点坐标为(−2,0).故选D.点睛:本题考查了一次函数图像上点的坐标特征.解题的关键点:与x轴的交点即纵坐标为零.4、C【解析】解:设邀请x个球队参加比赛,依题意得1+2+3+…+x-1=10,即,∴x2-x-20=0,∴x=5或x=-4(不合题意,舍去).故选C5、A【解析】

连接BD、ND,由勾股定理得可得BD=4,由三角形中位线定理可得EF=DN,当DN最长时,EF长度的最大,即当点N与点B重合时,DN最长,由此即可求得答案.【详解】连接BD、ND,由勾股定理得,BD==4,∵点E、F分别为DM、MN的中点,∴EF=DN,当DN最长时,EF长度的最大,∴当点N与点B重合时,DN最长,∴EF长度的最大值为BD=2,故选A.【点睛】本题考查了勾股定理,三角形中位线定理,正确分析、熟练掌握和灵活运用相关知识是解题的关键.6、C【解析】

连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】解:连接AD,

∵△ABC是等腰三角形,点D是BC边的中点,

∴AD⊥BC,

∴S△ABC=BC•AD=×4×AD=16,解得AD=8,

∵EF是线段AC的垂直平分线,

∴点C关于直线EF的对称点为点A,

∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD故选:C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.7、B【解析】

根据二次根式有意义的条件可得,再解不等式即可.【详解】解:由题意得:,解得:,

故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.8、D【解析】

分别求得各个选项中发生的可能性的大小,然后比较即可确定正确的选项.【详解】A、朝上点数为2的可能性为;B、朝上点数为7的可能性为0;C、朝上点数为3的倍数的可能性为;D、朝上点数不小于2的可能性为.故选D.【点睛】主要考查可能性大小的比较:只要总情况数目(面积)相同,谁包含的情况数目(面积)多,谁的可能性就大,反之也成立;若包含的情况(面积)相当,那么它们的可能性就相等.9、B【解析】

轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能完全重合,根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不符合定义,不是轴对称图形,故本选项错误;B、符合定义是轴对称图形,故本选项正确;C、不符合定义,不是轴对称图形,故本选项错误;D、不符合定义,不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、B【解析】

根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【详解】∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为cm,cm,∴AB=4cm,BC=cm,∴空白部分的面积=×4−12−16=+16−12−16=cm2.故选B.【点睛】此题考查二次根式的应用,解题关键在于将正方形面积直接开根即是正方形的边长.11、C【解析】试题解析:设,因为,,所以,在与中,所以∽,那么,,则,解得,故本题应选C.12、B【解析】

A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选C.二、填空题(每题4分,共24分)13、1【解析】

由菱形的性质可得BC=CD=1,AC⊥BD,由题意可证四边形ODEC是矩形,可得OE=CD=1.【详解】解:∵四边形ABCD是菱形,∴BC=CD=1,AC⊥BD,∵DE∥AC,CE∥BD,∴四边形ODEC是平行四边形,且AC⊥BD,∴四边形ODEC是矩形,∴OE=CD=1,故答案为1.【点睛】本题考查了菱形的性质,矩形的判定和性质,证明四边形ODEC是矩形是解题的关键.14、<【解析】

利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.【详解】解:由折线统计图得乙运动员的成绩波动较大,所以S甲2<S乙2故选<【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.15、2.5【解析】

根据题意,△ABC是直角三角形,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,由点I是内心,则,利用等面积的方法求得,然后利用平行线分线段成比例,得,又由BD=DI,把数据代入计算,即可得到DI的长度.【详解】解:如图,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,在△ABC中,AB=10,CA=8,BC=6,∴,∴△ABC是直角三角形,即AC⊥BC,∵DI∥BC,∴DE⊥AC,∵∠BAC的平分线与∠BCA的平分线交于点I,∴点I是三角形的内心,则,在△ABC中,根据等面积的方法,有,设即,解得:,∵DI∥BC,∴,∠DIB=∠CBI=∠DBI,∴DI=BD,∴,解得:BD=2.5,∴DI=2.5;故答案为:2.5.【点睛】本题考查了三角形的角平分线性质,平行线分线段成比例,以及等面积法计算高,解题的关键是利用等面积法求得内心到各边的距离,以及掌握平行线分线段成比例的性质.16、2【解析】

分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:由题意可得:x2﹣9=1且x+2≠1,解得x=2.故答案为:2.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:分母不为零这个条件不能少.17、x=1【解析】

关于x、y的二元一次方程组mx-y=2x-y=-n的解即为直线l1:y=mx-2与直线l2:y=x+n的交点P(1,2【详解】解:∵直线l1:y=mx-2与直线l2:y=x+n相交于点P(1,2),∴关于x、y的二元一次方程组mx-y=2x-y=-n的解是x=1故答案为x=1y=2【点睛】本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.18、4【解析】

根据对角线互相垂直的四边形的面积等于对角线乘积的一半.【详解】解:如图,∵AC平分∠BAD,∴∠BAE=∠DAE,在△BAE和△DAE中AB=AD,∴△BAE≌△DAE,∴∠BEA=∠DEA,∵∠BEA+∠DEA=180º,∴∠BEA=∠DEA=90º,∴DB⊥AC,∴S四边形ABCD=12AC×∵AC=8,S四边形ABCD=16,∴BD=4.故答案为:4.【点睛】本题考查了对角线互相垂直的四边形的面积.三、解答题(共78分)19、(1)①y=﹣4x+2;②x>-;(2)①;②y1=2x+2.【解析】

(1)根据正比例函数的定义即可求解,再列出不等式即可求解;(2)根据一次函数与二元一次方程组的关系即可求解,把两点代入即可求解.【详解】解:(1)①∵y﹣2与x成正比例,设y﹣2=kx,把x=2,y=﹣1代入可得;﹣1﹣2=2k,解得:k=﹣4,∴y=﹣4x+2,②当y<3时,则﹣4x+2<3,解得:x>-;(2)①把点M(1,p)代入y2=﹣2x+1=4,∴关于x、y的二元一次方程组组的解即为直线l1:y1=mx+n与直线l2:y2=﹣2x+1相交的交点M(1,4)的坐标.故答案为:;②b把点M(1,4)和点(﹣2,﹣2)代入直线l1:y1=mx+n,可得:,解得:,所以直线l1的解析式为:y1=2x+2.【点睛】此题主要考查二元一次方程组与一次函数的性质,解题的关键是熟知他们的关系.20、(1)见解析;(2)见解析;(3)76(辆).【解析】

(1)根据频数÷总数=频率进行计算即可:36÷200=0.18,200×0.39=78,200﹣10﹣36﹣78﹣20=56,56÷200=0.1.(2)结合(1)中的数据补全图形即可.(3)根据频数分布直方图可看出汽车时速不低于60千米的车的数量.【详解】解:(1)填表如下:数据段频数频率30~40100.0540~50360.1850~60780.3960~70560.170~80200.10总计2001(2)如图所示:(3)违章车辆数:56+20=76(辆).答:违章车辆有76辆.21、【解析】

先利用平方差公式对进行因式分解,然后把除法运算转化为乘法运算,能约分的要约分,最后进行减法运算即可.【详解】原式===【点睛】本题主要考查分式的混合运算,掌握分式混合运算顺序和法则是解题的关键.22、(1)30°;(2)海监船继续向正东方向航行没有触礁的危险,见解析【解析】

(1)在△ABC中,求出∠CAB、∠CBA的度数即可解决问题;

(2)作CD⊥AB于D.求出CD的值即可判定;【详解】解:(1)由题意得,∠CAB=30°,∠CBA=30°+90°=120°

∴∠ACB=180°-∠CBA-∠CAB=30°;

(2)由(1)可知∠ACB=∠CAB=30°,

∴AB=CB=30×=20(海里),∠CBD=60°,

过点C作CD⊥AB于点D,在Rt△CBD中,

CD=BCsin60°=10(海里)

10>15

∴海监船继续向正东方向航行是安全的.【点睛】本题考查了解直角三角形的应用-方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.23、△ABC是等腰三角形;理由见解析【解析】

首先将已知等式进行因式分解,然后由三角形三边都大于0,解其方程得到,即可判定.【详解】∵,,是的三边,都大于0∴∴△ABC是等腰三角形.【点睛】此题主要考查因式分解的应用,利用三角形三边都大于0,解其方程即可解题.24、需要购进图书2本.【解析】

根据总利润=每本利润×销售数量,可得出关于a的一元二次方程,解之可得出a的值,结合利润率不得超过20%可确定a值,再

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论