版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年浙江省台州市玉环市数学八年级下册期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在矩形OABC中,点B的坐标是(1,3),则AC的长是()A.3 B.2 C. D.42.如图,在□ABCD中,点E、F分别在边AB、DC上,下列条件不能使四边形EBFD是平行四边形的条件是()A.DE=BF B.AE=CF C.DE∥FB D.∠ADE=∠CBF3.一元二次方程的解为()A. B.B. C., D.,4.如图,在△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DGFE是正方形.若DE=4cm,则AC的长为()A.4cm B.2cm C.8cm D.4cm5.在代数式,,,﹣b,中,是分式的个数为()A.1个 B.2个 C.3个 D.4个6.若等腰三角形的周长为60cm,底边长为xcm,一腰长为ycm,则y关于x的函数解析式及自变量x的取值范围是()A.y=60-2x(0<x<60) B.y=60-2x(0<x<30)C.y=(60-x)(0<x<60) D.y=(60-x)(0<x<30)7.我市四月份某一周每天的最高气温(单位:℃)统计如下:29,30,25,27,25,则这组数据的中位数与众数分别是()A.25;25B.29;25C.27;25D.28;258.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是()A.矩形 B.菱形 C.正方形 D.无法判断9.下列属于最简二次根式的是()A. B. C. D.10.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.王玲和李凯进行投球比赛,每人连投12次,投中一次记2分,投空一次记1分,王玲先投,投得16分,李凯要想超过王玲,应至少投中________次.12.如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确的有_____.(填序号)13.化简;÷(﹣1)=______.14.若一个直角三角形的两直角边长分别是1、2,则第三边长为____________。15.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是_____.16.若代数式在实数范围内有意义,则实数x的取值范围是______.17.如果函数y=kx+b的图象与x轴交点的坐标是(3,0),那么一元一次方程kx+b=0的解是_____.18.请写出“三个角都相等的三角形是等边三角形”的逆命题:_____.三、解答题(共66分)19.(10分)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.20.(6分)如图,已知△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,联结EC.(1)求证:四边形ADCE是平行四边形;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.21.(6分)如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm.求:(1)FC的长;(2)EF的长.22.(8分)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连结EF与边CD相交于点G,连结BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;23.(8分)为了调查甲,乙两台包装机分装标准质量为奶粉的情况,质检员进行了抽样调查,过程如下.请补全表一、表二中的空,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:)如下:甲:394,400,408,406,410,409,400,400,393,395乙:402,404,396,403,402,405,397,399,402,398整理数据:表一频数种类质量()甲乙____________003310________________________130分析数据:表二种类甲乙平均数401.5400.8中位数____________402众数400____________方差36.858.56得出结论:包装机分装情况比较好的是______(填甲或乙),说明你的理由.24.(8分)如图,在中,,,是的垂直平分线.(1)求证:是等腰三角形.(2)若的周长是,,求的周长.(用含,的代数式表示)25.(10分)某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.项目选择统计图训练后篮球定时定点投篮测试进球统计表进球数(个)876543人数214782请你根据图表中的信息回答下列问题:(1)选择长跑训练的人数占全班人数的百分比是___________,该班共有同学___________人;(2)求训练后篮球定时定点投篮人均进球数;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%.请求出参加训练之前的人均进球数.26.(10分)(1)计算:(2)
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据勾股定理求出OB,根据矩形的性质得出AC=OB,即可得出答案.【详解】解:连接OB,过B作BM⊥x轴于M,∵点B的坐标是(1,3),∴OM=1,BM=3,由勾股定理得:OB=∵四边形OABC是矩形,∴AC=OB,∴AC=,故选:C.【点睛】本题考查了点的坐标、矩形的性质、勾股定理等知识点,能根据矩形的性质得出AC=OB是解此题的关键.2、A【解析】
根据平行四边形的性质可得AB∥CD,添加DE=BF后,满足一组对边平行,另一组对边相等,不符合平行四边形的判定方法,进而可判断A项;根据平行四边形的性质可得AB∥CD,AB=CD,进一步即得BE=DF,根据一组对边平行且相等的四边形是平行四边形即可判断B项;根据平行四边形的性质可得AB∥CD,进而根据平行四边形的定义可判断C项;根据平行四边形的性质可证明△ADE≌△CBF,进而可得AE=CF,DE=BF,然后根据两组对边相等的四边形是平行四边形即可判断D项.【详解】解:A、∵四边形ABCD是平行四边形,∴AB∥CD,由DE=BF,不能判定四边形EBFD是平行四边形,所以本选项符合题意;B、∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四边形EBFD是平行四边形,所以本选项不符合题意;C、∵四边形ABCD是平行四边形,∴AB∥CD,∵DE∥FB,∴四边形EBFD是平行四边形,所以本选项不符合题意;D、∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,AB=CD,∵∠ADE=∠CBF,∴△ADE≌△CBF(ASA),∴AE=CF,DE=BF,∴BE=DF,∴四边形EBFD是平行四边形,所以本选项不符合题意.故选:A.【点睛】本题考查了平行四边形的性质和判定以及全等三角形的判定和性质,属于常考题型,熟练掌握平行四边形的判定和性质是解本题的关键.3、D【解析】
把方程整理成,然后因式分解求解即可.【详解】解:把方程整理成即∴或解得:,故选:D.【点睛】此题考查了一元二次方程的解法,一元二次方程的解法有:直接开平方法;分解因式法;公式法;配方法,本题涉及的解法有分解因式法,此方法的步骤为:把方程右边通过移项化为0,方程左边利用提公因式法,式子相乘法,公式法以及分组分解法分解因式,然后根据两数积为0,两数中至少有一个为0,转化为两个一元一次方程,进而得到原方程的解.4、D【解析】
根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=2,由勾股定理求出CE,即可得出AC的长.【详解】解:∵点D、E分别是边AB、AC的中点,∴DE=BC,∵DE=4cm,∴BC=8cm,∵AB=AC,四边形DEFG是正方形,∴DG=EF,BD=CE,在Rt△BDG和Rt△CEF,,∴Rt△BDG≌Rt△CEF(HL),∴BG=CF=2,∴EC=2,∴AC=4cm.故选D.【点睛】本题考查了正方形的性质、相似三角形的判定、勾股定理、等腰三角形的性质以及正方形的性质,是基础题,比较简单.5、B【解析】
根据分式的定义解答即可.【详解】,,,﹣b的分母中不含字母,是整式;,的分母中含字母,是分式.故选B.【点睛】本题主要考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.注意π不是字母,是常数,所以分母中含π的代数式不是分式,是整式.6、D【解析】∵2y+x=60,∴y=(60-x)(0<x<30).故选D.7、C【解析】25出现了2次,出现的次数最多,则众数是25;把这组数据从小到大排列25,25,27,29,30,最中间的数是27,则中位数是27;故选C.8、B【解析】
作DF⊥BC,BE⊥CD,先证四边形ABCD是平行四边形.再证Rt△BEC≌Rt△DFC,得,BC=DC,所以,四边形ABCD是菱形.【详解】如图,作DF⊥BC,BE⊥CD,由已知可得,AD∥BC,AB∥CD∴四边形ABCD是平行四边形.在Rt△BEC和Rt△DFC中∴Rt△BEC≌Rt△DFC,∴BC=DC∴四边形ABCD是菱形.故选B【点睛】本题考核知识点:菱形的判定.解题关键点:通过全等三角形证一组邻边相等.9、B【解析】
直接利用最简二次根式的定义分析得出答案.【详解】解:A、=3,故此选项错误;B、是最简二次根式,故此选项正确;C、,故此选项错误;D、,故此选项错误;故选:B.【点睛】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.10、C【解析】
根据轴对称图形和中心对称图形的概念逐一判断即可.【详解】A:是轴对称图形,不是中心对称图形.故错误;B:不是轴对称图形,是中心对称图形.故错误;C:是轴对称图形,也是中心对称图形.故正确;D:是轴对称图形,不是中心对称图形.故错误;故答案选C.【点睛】本题主要考查了轴对称图形和中心对称图形的分辨,熟记轴对称和中心对称的有关概念是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】
根据题意,可以列出相应的不等式,本题得以解决,注意问题中是李凯超过王玲.【详解】解:设李凯投中x个球,总分大于16分,则2x+(12-x)×1>16,解得,x>4,∴李凯要想超过王玲,应至少投中1次,故答案为:1.【点睛】本题考查一元一次不等式的应用,解答本题的关键是明确题意,列出相应的不等式,利用不等式的性质解答.12、①②③④【解析】分析:分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.详解:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故答案为①②③④.点睛:本题考查内容较多,由BC=EC,得∠CEB=∠CBE,再由平行四边形的性质得∠CEB=∠EBF,可得BE平分∠CBF;再由等腰三角形的判定与性质可得CF平分∠DCB,BC=FB;由线段垂直平分线的判定可得PF=PC.13、-【解析】
直接利用分式的混合运算法则即可得出.【详解】原式,,,.故答案为.【点睛】此题主要考查了分式的化简,正确掌握运算法则是解题关键.14、【解析】
根据勾股定理计算即可.【详解】由勾股定理得,第三边长=,故答案为:.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.15、1【解析】
试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是:×DE×BC=×10×3=1,故答案为1.考点:角平分线的性质.16、x≠【解析】
根据分式的分母不为0可得关于x的不等式,解不等式即得答案.【详解】解:∵代数式在实数范围内有意义,∴2x-1≠0,解得:x≠.故答案为:x≠.【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.17、1【解析】
根据方程的解是函数图象与x轴的交点的横坐标,即可求解.【详解】解:∵函数y=kx+b的图象与x轴的交点坐标是(1,0),
∴方程kx+b=0的解是x=1.故答案为:1.【点睛】本题考查一次函数与一元一次方程,方程的解是函数图象与x轴的交点的横坐标18、等边三角形的三个角都相等.【解析】
把原命题“三个角都相等的三角形是等边三角形”的题设与结论进行交换即可.【详解】“三个角都相等的三角形是等边三角形”的逆命题为“等边三角形的三个角都相等”,故答案为:等边三角形的三个角都相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.三、解答题(共66分)19、见解析【解析】
由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,又由点E、F分别是▱ABCD边AD、BC的中点,可得DE=BF,继而证得四边形BFDE是平行四边形,即可证得结论.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E、F分别是▱ABCD边AD、BC的中点,∴DE=AD,BF=BC,∴DE=BF,∴四边形BFDE是平行四边形,∴BE=DF.【点睛】本题主要考查平行四边形的判定与性质定理,掌握对边平行且相等的四边形是平行四边形,是解题的关键.20、(1)见解析;(2)四边形ADCE是菱形,见解析.【解析】
(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形;(2)由∠BAC=90°,AD是边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,即证;【详解】(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形,(2)∵∠BAC=90°,AD是边BC上的中线.∴AD=CD,∵四边形ADCE是平行四边形,∴四边形ADCE是菱形【点睛】本题考查了平行四边形的判定和性质,(1)证得四边形ABDE,四边形ADCE为平行四边形即得;(2)由∠BAC=90°,AD上斜边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,从而证得四边形ADCE是菱形.21、(1)4cm;(2)5cm.【解析】
(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,由勾股定理即可得出结论;(2)由于EF=DE,可设EF的长为x.在Rt△EFC中,利用勾股定理即可得出结论.【详解】(1)由题意可得:AF=AD=10cm.在Rt△ABF中,∵AB=8cm,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4(cm).(2)由题意可得:EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得:x=5,即EF的长为5cm.【点睛】本题考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.22、(1)、证明过程见解析;(2)、60°.【解析】试题分析:根据正方形的性质得出AD∥BF,结合AE=CF可得四边形ACFE是平行四边形,从而得出EF∥AC;连接BG,根据EF∥AC可得∠F=∠ACB=45°,根据∠GCF=90°可得∠CGF=∠F=45°可得CG=CF,根据AE=CF可得AE=CG,从而得出△BAE≌△BCG,即BE=EG,得出△BEG为等边三角形,得出∠BEF的度数.试题解析:(1)∵四边形ABCD是正方形∴AD∥BF∵AE="CF"∴四边形ACFE是平行四边形∴EF∥AC(2)连接BG∵EF∥AC,∴∠F=∠ACB=45°,∵∠GCF=90°,∴∠CGF=∠F=45°,∴CG=CF,∵AE=CF,∴AE=CG,∴△BAE≌△BCG(SAS)∴BE=BG,∵BE=EG,∴△BEG是等边三角形,∴∠BEF=60°考点:平行四边形的判定、矩形的性质、三角形全等的应用.23、整理数据:3,1,5;分析数据:400,402;得出结论:乙,理由详见解析.【解析】
整理数据:根据所给的数据填写表格一即可;分析数据:根据中位数、众数的定义求解即可;得出结论:结合表二中的数据解答即可.【详解】整理数据:表一中,甲组:393≤x<396的有3个,405≤x<408的有1个;乙组:402≤x<405的有5个;故答案为:3,1,5;分析数据:表二中,甲组:把10个数据按照从小到大顺序排列为:393,394,395,400,400,400,406,408,409,410,中位数为中间两个数据的平均数==400,乙组:出现次数最多的数据是402,∴众数是402;故答案为:400,402;得出结论:包装机分装情况比较好的是乙;理由如下:由表二知,乙包装机分装的奶
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 热力管网运行工安全实践强化考核试卷含答案
- 2025年沁阳事业单位真题
- 电镀工岗前道德考核试卷含答案
- 刨花板工安全意识水平考核试卷含答案
- 干法熄焦工岗前评优考核试卷含答案
- 饲料配方师岗前成果考核试卷含答案
- 家具制作工班组管理考核试卷含答案
- 稀土原辅材料预处理工岗前班组安全考核试卷含答案
- 化工工艺试验工标准化测试考核试卷含答案
- 焊工安全素养水平考核试卷含答案
- 排球 垫球、传球技术 教案()
- 中级微观经济学智慧树知到答案2024年对外经济贸易大学
- 中考英语阅读理解50篇附解析
- 2023年西藏中考数学真题试卷及答案
- WS-T 10010-2023 卫生监督快速检测通用要求(代替WS-T 458-2014)
- 输变电工程标准化施工作业卡变电工程
- 《国共合作与北伐战争》优课一等奖课件
- 中国旅游客源国概况-第二章-中国海外客源市场分
- 《分散系》说课课件
- 中小学综合实践活动课程指导纲要
- 加油站综合应急预案演练记录
评论
0/150
提交评论