有机化学化合物中的化学键和分子结构_第1页
有机化学化合物中的化学键和分子结构_第2页
有机化学化合物中的化学键和分子结构_第3页
有机化学化合物中的化学键和分子结构_第4页
有机化学化合物中的化学键和分子结构_第5页
已阅读5页,还剩102页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于有机化学化合物中的化学键和分子结构处理共价键的两种近似方法:价键法和分子轨道法描述共价键的两种模型:定域模型和离域模型第一节共价键理论第2页,共107页,2024年2月25日,星期天1.1价键的形成可看作是原子轨道的重叠或电子配对的结果。成键的电子只处于形成共价键的两个原子之间。两原子如果都有未成键电子,并且自旋方向相反,就能配对成键。电子云重叠部分越大,所形成的键越牢固。1、价键理论原子轨道:原子中能找到电子的区域,用波函数

Φ表示。是对绕核电子的量子力学描述价键法基本要点:第3页,共107页,2024年2月25日,星期天s轨道p轨道d轨道s,p,d原子轨道的形状、伸展方向1.2共价键的饱和性和方向性如果一个原子的未成对电子已经配对,就不能再与其它的未成对电子配对。饱和性第4页,共107页,2024年2月25日,星期天方向性三个能量相等的P轨道第5页,共107页,2024年2月25日,星期天S轨道与P轨道重叠成键,S轨道必须沿着P轨道的对称轴重叠才能达到最大的交盖。P轨道S轨道P轨道对称轴第6页,共107页,2024年2月25日,星期天价键理论的局限:把成键电子描述成定域在两个原子之间,是一种定域的分子轨道理论。在定量计算分子的性质时,价键法现已大部分被分子轨道法所代替。第7页,共107页,2024年2月25日,星期天2、分子轨道理论

分子轨道理论认为成键电子不是定域在特定原子间,而是分布在能量不连续的一系列分子轨道中。

分子轨道是由原子轨道的线性组合而成,分子轨道数等于形成分子的原子轨道数,是守恒的。Ψ=c1φ1+c2φ2+……+cnφnC:原子轨道系数休克尔(德)的分子轨道法(HMO方法)

量子化学所指的分子轨道不是指分子本身运动的轨道,而是分子中每个电子的运动状态。第8页,共107页,2024年2月25日,星期天如果两个原子轨道的组合,则形成两个分子轨道:Ψ1=φ1+φ2为成键轨道,两核间波函数增大,电子云出现几率增加,分子轨道能量比原子轨道低。Ψ2=φ1-φ2为反键轨道,两核间波函数减小,电子云出现几率降低,分子轨道能量比原子轨道高。组成分子轨道的原子轨道能量要相近根据分子轨道对称性不同,分为轨道和轨道。电子云密度中心在两成键原子核的连线上,轨道电子云密度中心处于键轴的上下,轨道第9页,共107页,2024年2月25日,星期天2.1由p轨道组成的

分子轨道位相一致的原子轨道之间的作用,形成成键轨道,位相相反的原子轨道之间的作用,形成反键轨道第10页,共107页,2024年2月25日,星期天HMO方法在处理共轭体系分子时,只把键看做分子骨架,而把电子看做是围绕电子、内层电子和原子核的分子轨道。2.2由p轨道组成的分子轨道第11页,共107页,2024年2月25日,星期天1,3-丁二烯:四个

分子轨道为Ψ1=φ1+φ2+φ3+φ4Ψ2=φ1+φ2-φ3+φ4Ψ3=φ1-φ2-φ3+φ4Ψ4=φ1-φ2+φ3-φ4第12页,共107页,2024年2月25日,星期天1,3,5-己三烯分子中六个p电子,可形成六个

分子轨道

Ψ1=φ1+φ2+φ3+φ4+φ5+φ6成键

Ψ2=φ1+φ2+φ3-φ4-φ5-φ6成键

Ψ3=φ1+φ2-φ3-φ4+φ5+φ6成键

Ψ4=φ1-φ2-φ3+φ4+φ5-φ6反键

Ψ5=φ1-φ2+φ3+φ4-φ5+φ6

反键Ψ6=φ1-φ2+φ3-φ4+φ5-φ6反键第13页,共107页,2024年2月25日,星期天2.3三个p轨道线性组合成三个

分子轨道烯丙基正离子:三个

分子轨道为Ψ1=φ1+φ2+φ3Ψ2=φ1-φ3Ψ3=φ1-φ2+φ3第14页,共107页,2024年2月25日,星期天2.4环状共轭多烯

利用Frost圆圈法形象的描述含有n个碳的环状多烯。首先在圆中画一个n边正多边形,其中一个角处于最低点,而多边形的其他各角与圆接触的点表示出相应的分子轨道能级。第15页,共107页,2024年2月25日,星期天环丁二烯和苯的

分子轨道Ψ1,Ψ2,Ψ3为成键轨道,其中Ψ2与Ψ3为简并轨道Ψ4,Ψ5,Ψ6为反键轨道,其中Ψ4与Ψ5为简并轨道非键轨道第16页,共107页,2024年2月25日,星期天每个sp3杂化轨道含1/4s成分和3/4p成分基态时碳原子的电子排布:1S22S22P23、杂化仍然是原子轨道,仅存在于成键过程中,有利于体系能量的降低。3.1sp3杂化与四面体结构等性杂化成键时,通常遵守电子间排斥作用最小和成键最强原则第17页,共107页,2024年2月25日,星期天sp3杂化轨道形状碳原子的sp3杂化轨道键角为109.5°第18页,共107页,2024年2月25日,星期天sp3杂化未共用电子对N的价电子层结构:2S22P3不等性sp3杂化NR3和R2O结构中N和O为sp3不等性杂化第19页,共107页,2024年2月25日,星期天2s2p2p杂化1个杂化轨道=1/3s+2/3p3.2sp2杂化与平面结构

C=CC=OC=NN=N双键为sp2杂化另自由基与正碳离子的杂化多数情况下也为sp2杂化第20页,共107页,2024年2月25日,星期天余下一个未参与杂化的p轨道,垂直与三个杂化轨道对称轴所在的平面。

第21页,共107页,2024年2月25日,星期天3.3sp杂化与线性结构

C≡CO=C=OCH2=C=CH2

中心碳是sp杂化sp杂化1个sp杂化轨道=1/2s+1/2p第22页,共107页,2024年2月25日,星期天一个sp杂化轨道二个sp杂化轨道

未参与杂化的两个p轨道的对称轴互相垂直且都垂直于sp杂化轨道对称轴所在直线。第23页,共107页,2024年2月25日,星期天1、键长键长:形成共价键的两个原子之间的距离。等于成键两原子的共价半径之和。说明:键长反映共价键的类型和键的牢固程度。同一类的共价键在不同的化合物中可能稍有不同!第二节共价键的键参数r1:A的范德华半径r2:A的共价半径r3:B的共价半径r4:B的范德华半径d:A-B键长第24页,共107页,2024年2月25日,星期天一些共价键的键长第25页,共107页,2024年2月25日,星期天2、键角乙醚甲烷键角:两个以上原子和其他原子成键时,两个共价键之间的夹角。甲醛说明:键角反映了分子的空间结构,分子结构不同,键角有所改变。第26页,共107页,2024年2月25日,星期天键能:当A和B两个原子(气态)结合成A-B气态分子时放出的能量。解离能:使1molA-B气态双原子分子的共价键离解为气态原子时吸收的能量。Ed(kJ

mol-1)3、键能说明:键能表示键的牢固程度,键能越大,键越牢固。第27页,共107页,2024年2月25日,星期天

多原子分子键能通常是同一类共价键的解离能平均值。甲烷C-H键键能(414kJ.mol-1)是上述解离能的平均值。第28页,共107页,2024年2月25日,星期天一些共价键的键能说明:化学环境不同的相同共价键的键能是有差异的!第29页,共107页,2024年2月25日,星期天4、键矩与偶极矩电负性:原子在分子中吸引电子的能力非极性共价键:两相同原子组成的共价键极性共价键:不同原子组成的共价键

-第30页,共107页,2024年2月25日,星期天δ+δ-μ=3.57x10-30(C.m)1D=3.334x10-30(C.m)(德拜)有机化合物键矩:(0.4-3.5D)

键的极性用键矩(μ)来衡量,它是正或负电荷中心所带电量与它们之间距离的乘积:

μ=q.d(C.m)第31页,共107页,2024年2月25日,星期天分子的极性用偶极矩表示:多原子分子偶极矩是各个共价键键矩的矢量和μ=0(C.m)μ=6.47x10-30(C.m)μ=3.28x10-30(C.m)键矩用于衡量共价键的极性,与化学性质有关;而偶极矩用于衡量分子的极性,与物理性质有关!第32页,共107页,2024年2月25日,星期天5、键的极化性与可极化度共价键在外界电场作用下,键的极性发生变化,产生了诱导偶极矩,称为键的极化性,或可极化性。键的极化性用极化度(率)来衡量。它表示成键电子被成键原子核电荷约束的相对程度,与许多因素有关:成键原子的体积:正比电负性:反比C-I>C-Br>C-Cl>C-F键的种类:

键比键容易极化外加电场强度:正比无论键是否有极性,均有一定的极化度第33页,共107页,2024年2月25日,星期天共价键的极性取决于取代基的效应如取代羧酸的酸性:CH3COOH ClCH2COOHCl2CHCOOH

Cl3CCOOHpKa4.762.861.290.65

取代基效应:分子中的某个原子或原子团对整个分子或分子中其它部分产生的影响第三节取代基效应第34页,共107页,2024年2月25日,星期天取代基效应电子效应场效应空间效应诱导效应共轭效应超共轭效应(位阻效应)(σ,π)(π-π,p-π)(σ-π,σ-p)空间传递的电子效应物理的相互作用第35页,共107页,2024年2月25日,星期天

在有机化合物中,由于电负性不同的取代基的影响,引起成键电子云沿着键链按取代基的电负性所决定的方向偏移的效应称为诱导效应,用I表示。1、电子效应(Electroniceffect):

由于取代基的作用而导致的共有电子对沿共价键转移的结果。1.1诱导效应(Inductiveeffect)第36页,共107页,2024年2月25日,星期天结构特征:单、双、叁键传递方式:σ、π键传递强度:与取代基的性质、数目及距离相关,距离越大,强度越弱。

取代基的影响电子云密度分布不均匀沿分子链传递转移的结果-诱导效应取代基性质决定传递方向诱导效应的相对强度:取决于取代基中心原子的电负性Electronegativeties第37页,共107页,2024年2月25日,星期天规则:a.同周期的原子:b.同族的原子:F>Cl>Br>I电负性:4.03.02.82.5c.相同的原子:不饱和度越大,-I效应越强d.带正电荷的取代基的-I强带负电荷的取代基的+I强+I-I第38页,共107页,2024年2月25日,星期天1.2共轭效应(Conjugation)共轭体系与共轭效应π-π共轭C1C2C3C4第39页,共107页,2024年2月25日,星期天p-π共轭C3C2C1CH3HH+H第40页,共107页,2024年2月25日,星期天特点:

分子中任何一个原子周围电子云密度变化,马上会引起其它部分的电子云密度的改变共轭效应不受传递距离的影响结构特征:单、重键交替共轭体系中所有原子共平面第41页,共107页,2024年2月25日,星期天苯酚分子中氧原子上的孤对电子与苯环上的π电子形成p-π共轭。结果:使羟基的邻、对位的碳原子带有部分的负电荷。π电子转移用弧形箭头表示Y为吸电子基团-吸电子共轭效应(-C),X为供电子基团-供电子共轭效应(+C).第42页,共107页,2024年2月25日,星期天共轭效应的强度取决于取代基中的中心原子的电负性和原子半径大小。电负性越大,-C越强。π-π共轭体系:同周期元素,随原子序数增大,-C增强:相同的元素,带正电荷的原子,-C效应较强:第43页,共107页,2024年2月25日,星期天p-π共轭体系:+C:同周期元素,电负性越大,+C效应越小+C:同族元素,原子半径越大,p轨道与双键中的π轨道重叠越困难,电子离域程度小,+C越小。

共轭效应与诱导效应在一个分子中往往是并存的,有时两种作用的方向是相反的.第44页,共107页,2024年2月25日,星期天静态时:(分子没有参加反应)-I>+C,吸电子基性质动态时:(分子处于反应中〕+C>-I,指导亲电物种进攻方向动态共轭效应在反应过程中起主导作用第45页,共107页,2024年2月25日,星期天1.3超共轭效应(Hyperconjugation)当C-H键与双键直接相连时,C-H键的强度减弱,H原子的活性增加。羰基化合物的α-C原子的H原子在取代反应中是活泼的第46页,共107页,2024年2月25日,星期天

C-H键上的σ电子发生离域,形成σ-π共轭。σ电子已经不再定域在原来的C、H两原子之间,而是离域在C3-C2之间,使H原子容易作为质子离去这种共轭强度远远弱于π-πp-π共轭。超共轭效应的作用:CCCHHHHHH第47页,共107页,2024年2月25日,星期天使分子的偶极矩增加:使正碳离子稳定性增加:在叔碳正离子中C-H键与空的p轨道具有9个超共轭效应,其结果:正电荷分散在3个碳原子上。第48页,共107页,2024年2月25日,星期天2、场效应(Fieldeffect)(F效应)

当分子中原子或原子团间相互作用,通过空间传递的电子效应-场效应。邻氯代苯丙炔酸:pKa:大小场效应是依赖分子的几何构型的。Cl-产生供电场,不利于H的离去第49页,共107页,2024年2月25日,星期天pKa值为4.74I、F共同作用结果第50页,共107页,2024年2月25日,星期天3、空间效应(Stericeffect)

分子内或分子间不同取代基相互接近时,由于取代基的体积大小、形状不同,相互接触而引起的物理的相互作用-空间效应(位阻效应)。空间效应的作用:3.1化合物(构象)的稳定性第51页,共107页,2024年2月25日,星期天3.2对化合物酸碱性的影响pKa1<pKa2

当t-Butyl在邻位时,把羧基挤出了与苯环所在平面,羧基的-C效应消失。第52页,共107页,2024年2月25日,星期天3.3对反应活性的影响例1:伯卤代烷的乙醇解的相对速度是与中心碳原子连接的烷基大小相关的:SN2反应乙氧基从背后进攻R越大,位阻越大第53页,共107页,2024年2月25日,星期天例2张力对反应的影响当胺同质子酸作用时,其碱性强度顺序为:R3N>R2NH>RNH2>NH3当它与体积较大的Lewis酸作用时,碱性强度顺序为:R3N<R2NH<RNH2<NH3两者在相互接近过程中,基团位阻导致相互排斥作用-F-张力(Face-Strain)2.6-二甲基吡啶几乎不与R3B作用第54页,共107页,2024年2月25日,星期天SN1反应形成正碳离子的一步键角的变化缓解了基团的拥挤程度

来自于离去基团背后的张力-B-张力(BackStrain)sp3-四面体sp2-平面三角型小环化合物环的键角-角张力

(AngleStrain)第55页,共107页,2024年2月25日,星期天第四节共振论

共振论代表价键理论的一种延伸,它用来处理一些复杂的分子体系,如具有共轭结构的分子,它们能画出不止一种可能的结构。20世纪30年代,Pauling提出共振论第56页,共107页,2024年2月25日,星期天4.1共振论共振杂化体是关于含有非定域键的分子的真实结构的一种表示法,是画出数个可能极限式结构,并假定真实分子为它们的共振杂化体。这些极限式仅存在于纸面上,它们是人们的设想。分子不是在它们之间的迅速转变,也不是某些分子具有一个极限式,而另外一些分子具有另一个极限式。物质的全部分子具有相同的结构,这个结构在所有时间都是一样的,并且为所有极限式的加权平均值。第57页,共107页,2024年2月25日,星期天4.2共振结构的书写规则a、在所有的共振结构式中,原子核的相对位置是固定不变的,只是核间电子分布不同,即只允许键和电子移动

b、共振结构必须符合价键理论例如,在任何极限式中碳原子只能为四价,氢原子的价电子数不得超过2,第二周期元素最多只能有8个价电子。第58页,共107页,2024年2月25日,星期天c、参与共振的所有原子必须位于同一平面或近似同一平面。满足p轨道最大程度重叠。d、共振结构必须具有相同数目的未配对电子如果两个未配对电子的自旋相同,则(II)式为双游离基,(II)式与(I)式所含有的未配对电子数目不同,因此(II)式不是乙烯的共振结构。第59页,共107页,2024年2月25日,星期天

有一些结构比另一些更为合理。最接近于真实分子的结构是具有下列特点的结构:共价键的数目最多;异号电荷的分离程度最低;任何负电荷都处于电负性最大的原子上(或任何正电荷都在电正性最大的原子上)。e、共振结构的能量应彼此大致相同第60页,共107页,2024年2月25日,星期天4.3共振效应电子云密度在分子的某一处减少,相应地在别处增大的现象,为共振效应。苯胺的苯环上邻、对位电子云密度增加第61页,共107页,2024年2月25日,星期天共振的位阻效应当组成分子的原子不在同一平面上时,共振效应降低或消失。a=0.145纳米,b=0.135纳米只有对位硝基上的氧原子与芳环共平面并发生共振。第62页,共107页,2024年2月25日,星期天第五节芳香性和休克尔规则

一、芳香性的定义

早期,考虑动力学稳定性,取代反应比加成反应更容易发生;后来,依靠热力学稳定性,以共轭能的大小来量度;近期,用光谱及磁的标准,磁有向性在平面л电子体系中能受感应,并可用质子磁共振光谱中位移到较低的场来鉴定或借反磁性的灵敏度上升的测定。另一种物理标准是整个芳香体系具有相同键长和共平面的特性。

第63页,共107页,2024年2月25日,星期天二、Hückel规则

2.1Hückel规则

Hückel从简单分子轨道理论研究入手,提出含有4n+2个π电子的平面共轭单环化合物应具芳香性。平面单环体系的分子轨道能级图特征:a.具有一个最低能级的成键轨道,b.具有能级较高的成对简并轨道,c.具有能量最高的反键轨道,当分子轨道数为偶数:单一最高能级轨道当分子轨道数为奇数:一对简并的最高能级轨道第64页,共107页,2024年2月25日,星期天

:原子轨道能量(库仑积分),:两原子轨道相互作用能量(交换积分),为负值第65页,共107页,2024年2月25日,星期天Frost使用做图法成功地表示了平面单环体系的分子轨道能级图,也表示了休克尔方程第66页,共107页,2024年2月25日,星期天闭壳结构开壳结构第67页,共107页,2024年2月25日,星期天2.2Hückel规则的修正Hückel规则的局限:仅适用于n小于等于6的单环平面共轭分子(1)周边修正法:忽略环中间的桥键,直接计算环周围形成的离域

电子数来判断芳香性。X

第68页,共107页,2024年2月25日,星期天(2)双键修正法:忽略双键在芳环体系中的影响,直接考虑其芳香性周边的电子数不符合4n+2规律有芳香性第69页,共107页,2024年2月25日,星期天(3)单键修正法:忽略单键在芳环体系中的影响,直接考虑其芳香性有芳香性第70页,共107页,2024年2月25日,星期天判断芳香性:是芳香性化合物不是芳香性化合物是芳香性化合物第71页,共107页,2024年2月25日,星期天三、反芳香性、非芳香性和同芳香性3.1反芳香性

某些具有4n

电子的环状共轭体系,虽然有电子离域,但却使分子体系的能量升高,并较其开链体系分子的性质还活泼,此种体系是反芳香性的。第72页,共107页,2024年2月25日,星期天3.2非芳香性某些具有4n

电子的环状体系,与其相应的开链物的性质相比,在热力学上既不表现活泼,又不表现稳定,此种体系是非芳香性的。非平面结构第73页,共107页,2024年2月25日,星期天3.3同芳香性同芳香性:在某些环系分子或离子中无正统的芳香体系的σ骨架,也无连续的P电子轨道排列。但当体系由于不相邻碳上P轨道部分重叠且具有4n+2个π电子的环状排列时也会呈现出一定的芳香稳定性。第74页,共107页,2024年2月25日,星期天在同芳香体系中,外加原子的存在将破坏离域π体系的物理连续性却不破坏离域体系。例如:环辛四烯溶于浓硫酸发生质子化,生成同芳香性正离子:越过一个饱和碳原子形成的稳定的环状共轭体系。第75页,共107页,2024年2月25日,星期天这种越过一个碳原子的同芳香性叫单同芳香体系,越过二个或三个饱和碳原子的则分别叫双同或三同芳香体系。环壬三烯三同芳香性第76页,共107页,2024年2月25日,星期天在(II)中双键α氢的活泼性是(III)中双键α氢的10倍。主要由于所形成的负离子(I)为双同芳香体系。第77页,共107页,2024年2月25日,星期天四、非苯芳烃的类型4.1含有六个π电子体系的芳香化合物

i)六元环第78页,共107页,2024年2月25日,星期天ii)五元环

杂芳香化合物分为两类:一类利用芳香π体系中的杂原子的未共享电子对;一类不利用此未共享电子对。

第79页,共107页,2024年2月25日,星期天第80页,共107页,2024年2月25日,星期天iii)七元环和八元环

平面:反芳香性非平面:非芳香性芳香性第81页,共107页,2024年2月25日,星期天-50oC稳定存在,高于-30oC不稳定第82页,共107页,2024年2月25日,星期天4.2含非六电子的芳香体系

i)含二个π电子的体系

-H-第83页,共107页,2024年2月25日,星期天第84页,共107页,2024年2月25日,星期天ii)含十个π电子的体系

(1)[10]-轮烯没有芳香性A是全顺式,B是反,顺,顺,顺,顺式,C是反,顺,反,顺,顺式;在A和B中存在角张力,在C中,环内两个氢的排斥力影响分子的稳定性,使之不具芳香性;[10]-轮烯容易受热环化为双环体系。第85页,共107页,2024年2月25日,星期天用一个原子代替两个氢原子得1,6-桥-[10]-环共轭多烯,有芳香性:第86页,共107页,2024年2月25日,星期天iii)大于[10]-轮烯的例子[14]-轮烯具有芳香性第87页,共107页,2024年2月25日,星期天第88页,共107页,2024年2月25日,星期天[18]-轮烯

第89页,共107页,2024年2月25日,星期天[22]-轮烯已被合成,具有芳香性。某些[26]-轮烯为平面的,有芳香性,而其它[26]-轮烯和[30]-轮烯是非平面的,没有芳香性。大环难于达到充分有效的芳香化合物那样的电子非定域。第90页,共107页,2024年2月25日,星期天芳香性判据:A、存在可产生感应磁场的环电流B、键长趋于平均化C、平面分子D、化学稳定性E、能发生芳香取代反应第91页,共107页,2024年2月25日,星期天第六节比共价键弱的作用

一、氢键9-40kJ/mol,是分子簇产生的驱动力

1.氢键的形成当H原子与电负性大、原子半径小的原子X以共价键结合成分子时,H受X原子影响,可以与另一个电负性大原子半径小且外层有孤对电子的Y原子结合形成X-H┄Y结构,H与Y原子之间的静电吸引作用称为氢键。共价键的键能:200-400kJ/mol分子间的静电引力:即范德华力,0.4-4kJ/mol,如偶极-偶极间、诱导偶极-诱导偶极间的吸引力第92页,共107页,2024年2月25日,星期天2.氢键的强弱

a、取决于X、Y原子的电负性与原子半径大小例:Cl与N电负性相近,但Cl的原子半径大,不能形成有效的氢键。

氢键的键长:一般指X-H┄Y之间的距离,大约0.3nm氢键的键能:8-40kJ/mol特例:F-H---F-

为210kJ/molX-H┄Yb、随着XH酸性和Y碱性的增强而增强第93页,共107页,2024年2月25日,星期天3.氢键的饱和性和方向性

当X-H┄Y形成氢键,第二个Y靠近则受到强烈的排斥,因此只能与一个Y结合。

以H为中心X-H┄Y尽可能的排在一条直线上,此时X与Y距离最远,斥力最小,形成的氢键最稳定。4.分子内氢键

分子内氢键不在一条直线上,有效的分子内氢键一般可形成稳定的五、六元环。例:乙二醇第94页,共107页,2024年2月25日,星期天5.氢键对物理性质的影响

影响熔沸点:分子间氢键沸点高,分子内氢键沸点低影响溶解度:分子间氢键易溶于水,分子内氢键不易溶于水而

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论