温度检测方法_第1页
温度检测方法_第2页
温度检测方法_第3页
温度检测方法_第4页
温度检测方法_第5页
已阅读5页,还剩117页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于温度检测方法12本章课件是在吉林大学王君的课件基础上修改而成。第2页,共122页,2024年2月25日,星期天3第一节概论

温度传感器是实现温度检测和控制的重要器件。在种类繁多的传感器中,温度传感器是应用最广泛、发展最快的传感器之一。温度是与人类生活息息相关的物理量。在2000多年前,就开始为检测温度进行了各种努力,并开始使用温度传感器检测温度。人类社会中,工业、农业、商业、科研、国防、医学及环保等部门都与温度有着密切的关系。工业生产自动化流程,温度测量点要占全部测量点的一半左右。温度是反映物体冷热状态的物理参数。因此,人类离不开温度,当然也离不开温度传感器。第3页,共122页,2024年2月25日,星期天4

一、温度的基本概念热力学温标国际实用温标摄氏温标华氏温标第4页,共122页,2024年2月25日,星期天5如果在式中再规定一个条件,就可以通过卡诺循环中的传热量来完全地确定温标。1954年,国际计量会议选定水的三相点为273.16,并以它的1/273.16定为一度,这样热力学温标就完全确定了,即T=273.16(Q1/Q2)。1848年威廉·汤姆首先提出以热力学第二定律为基础,建立温度仅与热量有关,而与物质无关的热力学温标。因是开尔文总结出来的,故又称开尔文温标,用符号K表示。它是国际基本单位制之一。根据热力学中的卡诺定理,如果在温度T1的热源与温度为T2的冷源之间实现了卡诺循环,则存在下列关系式1.热力学温标Q1——热源给予热机的传热量

Q2——热机传给冷源的传热量第5页,共122页,2024年2月25日,星期天6为解决国际上温度标准的同意及实用问题,国际上协商决定,建立一种既能体现热力学温度(即能保证一定的准确度),又使用方便、容易实现的温标,即国际实用温标InternationalPracticalTemperatureScaleof1968(简称IPTS-68),又称国际温标。2.国际实用温标注意:摄氏温度的分度值与开氏温度分度值相同,即温度间隔1K=1℃。T0是在标准大气压下冰的融化温度,T0=273.15K。水的三相点温度比冰点高出0.01K。1968年国际实用温标规定热力学温度是基本温度,用t表示,其单位是开尔文,符号为K。1K定义为水三相点热力学温度的1/273.16,水的三相点是指纯水在固态、液态及气态三项平衡时的温度,热力学温标规定三相点温度为273.16K,这是建立温标的惟一基准点。第6页,共122页,2024年2月25日,星期天7氢氧三相点沸点54.36190.188-218.798-182.962水三相点沸点273.16373.150.01100.0锌凝固点692.73419.58银凝固点1235.08961.93金凝固点1337.581064.43物质三相点平衡状态温度T68/KT68/℃13.817.04220.827.102-259.31-256.108-252.87-246.048沸点25/76atm沸点沸点国际实用温标(IPTS-68)的固定点第7页,共122页,2024年2月25日,星期天8四个温度段:规定各温度段所使用的标准仪器①低温铂电阻温度计(13.81K—273.15K);②铂电阻温度计(273.15K—903.89K);③铂铑-铂热电偶温度计(903.89K—1337.58K);④光测温度计(1337.58K以上)。国际实用开尔文温度与国际实用摄氏温度分别用符号T68和t68来区别(一般简写为T与t)。第8页,共122页,2024年2月25日,星期天93.摄氏温标是工程上最通用的温度标尺。摄氏温标是在标准大气压(即101325Pa)下将水的冰点与沸点中间划分一百个等份,每一等份称为摄氏一度(摄氏度,℃),一般用小写字母t表示。与热力学温标单位开尔文并用。摄氏温标与国际实用温标温度之间的关系如下:4.华氏温标目前已用得较少,它规定在标准大气压下冰的融点为32华氏度,水的沸点为212华氏度,中间等分为180份,每一等份称为华氏一度,符号用℉,它和摄氏温度的关系如下:T=t+273.15

Kt=T-273.15

℃m=1.8n+32℉n=5/9(m-32)℃第9页,共122页,2024年2月25日,星期天10

二、温度传感器的特点与分类第10页,共122页,2024年2月25日,星期天11物理现象

体积热膨胀

电阻变化温差电现象导磁率变化电容变化压电效应超声波传播速度变化物质颜色P–N结电动势晶体管特性变化可控硅动作特性变化热、光辐射种类铂测温电阻、热敏电阻热电偶BaSrTiO3陶瓷石英晶体振动器超声波温度计示温涂料液晶半导体二极管晶体管半导体集成电路温度传感器可控硅辐射温度传感器光学高温计1.气体温度计2.玻璃制水银温度计3.玻璃制有机液体温度计4.双金属温度计5.液体压力温度计6.气体压力温度计1.

热铁氧体2.

Fe-Ni-Cu合金第11页,共122页,2024年2月25日,星期天12热电偶、测温电阻器、热敏电阻、感温铁氧体、石英晶体振动器、双金属温度计、压力式温度计、玻璃制温度计、辐射传感器、晶体管、二极管、半导体集成电路传感器、可控硅分类特征传感器名称超高温用传感器1500℃以上光学高温计、辐射传感器高温用传感器1000~1500℃光学高温计、辐射传感器、热电偶中高温用传感器500~1000℃光学高温计、辐射传感器、热电偶中温用传感器0~500℃低温用传感器-250~0℃极低温用传感器-270~-250℃BaSrTiO3陶瓷晶体管、热敏电阻、压力式玻璃温度计见表下内容

测温范围温度传感器分类(1)第12页,共122页,2024年2月25日,星期天13分类特征传感器名称测温范围宽、输出小测温电阻器、晶体管、热电偶半导体集成电路传感器、可控硅、石英晶体振动器、压力式温度计、玻璃制温度计线性型测温范围窄、输出大热敏电阻指数型函数开关型特性特定温度、输出大感温铁氧体、双金属温度计

测温特性温度传感器分类(2)第13页,共122页,2024年2月25日,星期天14分类特征传感器名称测定精度±0.1~±0.5℃铂测温电阻、石英晶体振动器、玻璃制温度计、气体温度计、光学高温计温度标准用测定精度±0.5~±5℃热电偶、测温电阻器、热敏电阻、双金属温度计、压力式温度计、玻璃制温度计、辐射传感器、晶体管、二极管、半导体集成电路传感器、可控硅绝对值测定用管理温度测定用相对值±1~±5℃

测定精度温度传感器分类(3)第14页,共122页,2024年2月25日,星期天15公元1600年,伽里略研制出气体温度计。一百年后,研制成酒精温度计和水银温度计。随着现代工业技术发展的需要,相继研制出金属丝电阻、温差电动式元件、双金属式温度传感器。1950年以后,相继研制成半导体热敏电阻器。最近,随着原材料、加工技术的飞速发展、又陆续研制出各种类型的温度传感器。三、温度传感器的发展概况第15页,共122页,2024年2月25日,星期天16

1.超高温与超低温传感器,如+3000℃以上和–250℃以下的温度传感器。

2.提高温度传感器的精度和可靠性,特别是测量速度。

3.研制家用电器、汽车及农畜业所需要的价廉的温度传感器。

5.发展适应特殊测温要求的温度传感器。

6.发展数字化、集成化、网络化的温度传感器。

温度传感器的主要发展方向第16页,共122页,2024年2月25日,星期天17温差热电偶(简称热电偶)是目前温度测量中使用最普遍的传感元件之一。它除具有结构简单,测量范围宽、准确度高、热惯性小,输出信号为电信号便于远传或信号转换等优点外,还能用来测量流体的温度、测量固体以及固体壁面的温度。微型热电偶还可用于快速及动态温度的测量。第二节热电偶温度传感器★热电偶的工作原理★热电偶回路的性质★热电偶的常用材料与结构★冷端处理及补偿★热电偶的选择、安装使用和校验第17页,共122页,2024年2月25日,星期天18两种不同的导体或半导体A和B组合成如图所示闭合回路,若导体A和B的连接处温度不同(设T>T0),则在此闭合回路中就有电流产生,也就是说回路中有电动势存在,这种现象叫做热电效应。这种现象早在1821年首先由西拜克(See-back)发现,所以又称西拜克效应。热电偶原理图TT0AB

一、热电偶的工作原理回路中所产生的电动势,叫热电势。热电势由两部分组成,即温差电势和接触电势。热端冷端第18页,共122页,2024年2月25日,星期天191.接触电势接触电势原理图+ABTeAB(T)-eAB(T)——导体A、B结点在温度T时形成的接触电动势;e——单位电荷,e=1.6×10-19C;

k——波尔兹曼常数,k=1.38×10-23J/K

;NA、NB

——导体A、B在温度为T时的电子密度。接触电势的大小与温度高低及导体中的电子密度有关。第19页,共122页,2024年2月25日,星期天20AeA(T,To)ToTeA(T,T0)——导体A两端温度为T、T0时形成的温差电动势;T,T0——高低端的绝对温度;σA——汤姆逊系数,表示导体A两端的温度差为1℃时所产生的温差电动势,例如在0℃时,铜的σ=2μV/℃。2.温差电势温差电势原理图第20页,共122页,2024年2月25日,星期天21由导体材料A、B组成的闭合回路,其接点温度分别为T、T0,如果T>T0,则必存在着两个接触电势和两个温差电势,回路总电势:T0TeAB(T)eAB(T0)eA(T,T0)eB(T,T0)AB3.回路总电势NAT、NAT0——导体A在结点温度为T和T0时的电子密度;NBT、NBT0——导体B在结点温度为T和T0时的电子密度;σA

、σB——导体A和B的汤姆逊系数。第21页,共122页,2024年2月25日,星期天22根据电磁场理论得结论(4点):EAB(T,T0)=EAB(T)-EAB(T0)=f(T)-C=g(T)由于NA、NB是温度的单值函数在工程应用中,常用实验的方法得出温度与热电势的关系并做成分度表,以供备查。由公式可得:EAB(T,T0)=EAB(T)-EAB(T0)=EAB(T)-EAB(0)-[EAB(T)-EAB(T0)]=EAB(T,0)-EAB(T0,0)

热电偶的热电势,等于两端温度分别为T和零度以及T0和零度的热电势之差。第22页,共122页,2024年2月25日,星期天23导体材料确定后,热电势的大小只与热电偶两端的温度有关。如果使EAB(T0)=常数,则回路热电势EAB(T,T0)就只与温度T有关,而且是T的单值函数,这就是利用热电偶测温的原理。只有当热电偶两端温度不同,热电偶的两导体材料不同时才能有热电势产生。热电偶回路热电势只与组成热电偶的材料及两端温度有关;与热电偶的长度、粗细无关。只有用不同性质的导体(或半导体)才能组合成热电偶;相同材料不会产生热电势,因为当A、B两种导体是同一种材料时,ln(NA/NB)=0,也即EAB(T,T0)=0。第23页,共122页,2024年2月25日,星期天24对于有几种不同材料串联组成的闭合回路,接点温度分别为T1、T2、

…、Tn

,冷端温度为零度的热电势。其热电势为

E=EAB(T1)+EBC(T2)+…+ENA(Tn)

由一种均质导体组成的闭合回路,不论其导体是否存在温度梯度,回路中没有电流(即不产生电动势);反之,如果有电流流动,此材料则一定是非均质的,即热电偶必须采用两种不同材料作为电极。

二、热电偶回路的性质1.均质导体定律第24页,共122页,2024年2月25日,星期天25

E总=EAB(T)+EBC(T)+ECA(T)=0三种不同导体组成的热电偶回路TABCTT2.中间导体定律一个由几种不同导体材料连接成的闭合回路,只要它们彼此连接的接点温度相同,则此回路各接点产生的热电势的代数和为零。如图,由A、B、C三种材料组成的闭合回路,则第25页,共122页,2024年2月25日,星期天26两点结论:

l)将第三种材料C接入由A、B组成的热电偶回路,如图,则图a中的A、C接点2与C、A的接点3,均处于相同温度T0之中,此回路的总电势不变,即同理,图b中C、A接点2与C、B的接点3,同处于温度T0之中,此回路的电势也为:T2T1AaBC23EABaAT023ABEABT1T2CT0EAB(T1,T2)=EAB(T1)-EAB(T2)(a)(b)T0T0EAB(T1,T2)=EAB(T1)-EAB(T2)第三种材料接入热电偶回路图第26页,共122页,2024年2月25日,星期天27思考中间导体定律非常重要,否则无法使用热电偶!为了测量热电势,必须断开热电偶闭合回路,接入电表及其它电路。有影响吗?ET0T0TET0T1T1T第27页,共122页,2024年2月25日,星期天28ET0T0TET0T1T1T电位计接入热电偶回路根据上述原理,可以在热电偶回路中接入电位计E,只要保证电位计与连接热电偶处的接点温度相等,就不会影响回路中原来的热电势,接入的方式见下图所示。

第28页,共122页,2024年2月25日,星期天29

EAB(T,T0)=EAC(T,T0)+ECB(T,T0)T0TEBA(T,T0)BAT0TEAC(T,T0)ACT0TECB(T,T0)CB2)如果任意两种导体材料的热电势是已知的,它们的冷端和热端的温度又分别相等,如图所示,它们相互间热电势的关系为:第29页,共122页,2024年2月25日,星期天303.中间温度定律

如果不同的两种导体材料组成热电偶回路,其接点温度分别为T1、T2(如图所示)时,则其热电势为EAB(T1,T2);当接点温度为T2、T3时,其热电势为EAB(T2,T3);当接点温度为T1、T3时,其热电势为EAB(T1,T3),则BBAT2T1

T3

AAB

EAB(T1,T3)=EAB(T1,T2)+EAB(T2,T3)第30页,共122页,2024年2月25日,星期天31EAB(T1,T3)=EAB(T1,0)+EAB(0,T3)

=EAB(T1,0)-EAB(T3,0)=EAB(T1)-EAB(T3)

ABT1T2T2A’B’T0T0热电偶补偿导线接线图E对于冷端温度不是零度时,热电偶如何分度表的问题提供了依据。如当T2=0℃时,则:只要T1、T0不变,接入AˊBˊ后不管接点温度T2如何变化,都不影响总热电势。这便是引入补偿导线原理。EAB=EAB(T1)–EAB(T0)说明:当在原来热电偶回路中分别引入与导体材料A、B同样热电特性的材料A′、B′(如图)即引入所谓补偿导线时,当EAA΄(T2)=EBB΄(T2),则回路总电动势为第31页,共122页,2024年2月25日,星期天32练习某个铂铑-铂热电偶(S型)输出为10.000mv,而其冷端(参考端)温度为25ºC,则其工作端的被测温度是多少?(分度表见教材P114)第32页,共122页,2024年2月25日,星期天33热电偶材料应满足:物理性能稳定,热电特性不随时间改变;化学性能稳定,以保证在不同介质中测量时不被腐蚀;热电势高,导电率高,且电阻温度系数小;便于制造;复现性好,便于成批生产。三、热电偶的常用材料与结构第33页,共122页,2024年2月25日,星期天34

1.铂—铂铑热电偶(S型)

分度号LB—3工业用热电偶丝:Φ0.5mm,实验室用可更细些。正极:铂铑合金丝,用90%铂和10%铑(重量比)冶炼而成。负极:铂丝。测量温度:长期:1300℃、短期:1600℃。特点:材料性能稳定,测量准确度较高;可做成标准热电偶或基准热电偶。用途:实验室或校验其它热电偶。测量温度较高,一般用来测量1000℃以上高温。在高温还原性气体中(如气体中含Co、H2等)易被侵蚀,需要用保护套管。材料属贵金属,成本较高。热电势较弱。(一)热电偶常用材料第34页,共122页,2024年2月25日,星期天35

2.镍铬—镍硅(镍铝)热电偶(K型)分度号EU—2工业用热电偶丝:Φ1.2~2.5mm,实验室用可细些。正极:镍铬合金(用88.4~89.7%镍、9~10%铬,0.6%硅,0.3%锰,0.4~0.7%钴冶炼而成)。负极:镍硅合金(用95.7~97%镍,2~3%硅,0.4~0.7%钴冶炼而成)。测量温度:长期1000℃,短期1300℃。特点:价格比较便宜,在工业上广泛应用。高温下抗氧化能力强,在还原性气体和含有SO2,

H2S等气体中易被侵蚀。复现性好,热电势大,但精度不如WRLB。第35页,共122页,2024年2月25日,星期天363.镍铬—考铜热电偶(E型)

分度号为EA—2工业用热电偶丝:Ф1.2~2mm,实验室用可更细些。正极:镍铬合金负极:考铜合金(用56%铜,44%镍冶炼而成)。测量温度:长期600℃,短期800℃。特点:价格比较便宜,工业上广泛应用。在常用热电偶中它产生的热电势最大。气体硫化物对热电偶有腐蚀作用。考铜易氧化变质,适于在还原性或中性介质中使用。第36页,共122页,2024年2月25日,星期天374.铂铑30—铂铑6热电偶(B型)

分度号为LL—2正极:铂铑合金(用70%铂,30%铑冶炼而成)。负极:铂铑合金(用94%铂,6%铑冶炼而成)。测量温度:长期可到1600℃,短期可达1800℃。特点:材料性能稳定,测量精度高。还原性气体中易被侵蚀。低温热电势极小,冷端温度在50℃以下可不加补偿。成本高。第37页,共122页,2024年2月25日,星期天38几种持殊用途的热电偶(1)铱和铱合金热电偶如铱50铑—铱10钌热电偶它能在氧化气氛中测量高达2100℃的高温。(2)钨铼热电偶是60年代发展起来的,是目前一种较好的高温热电偶,可使用在真空惰性气体介质或氢气介质中,但高温抗氧能力差。国产钨铼-钨铼20热电偶使用温度范围300~2000℃分度精度为1%。(3)金铁—镍铬热电偶主要用在低温测量,可在2~273K范围内使用,灵敏度约为10μV/℃。(4)钯—铂铱15热电偶是一种高输出性能的热电偶,在1398℃时的热电势为47.255mV,比铂—铂铑10热电偶在同样温度下的热电势高出3倍,因而可配用灵敏度较低的指示仪表,常应用于航空工业。第38页,共122页,2024年2月25日,星期天39(6)铜—康铜热电偶,分度号MK

热电偶的热电势略高于镍铬-镍硅热电偶,约为43μV/℃。复现性好,稳定性好,精度高,价格便宜。缺点是铜易氧化,广泛用于20K~473K的低温实验室测量中。(5)铁—康铜热电偶,分度号TK

灵敏度高,约为53μV/℃,线性度好,价格便宜,可在800℃以下的还原介质中使用。主要缺点是铁极易氧化,采用发蓝处理后可提高抗锈蚀能力。第39页,共122页,2024年2月25日,星期天40

(二)常用热电偶的结构类型

1.工业用热电偶

下图为典型工业用热电偶结构示意图。它由热电偶丝、绝缘套管、保护套管以及接线盒等部分组成。实验室用时,也可不装保护套管,以减小热惯性。工业热电偶结构示意图1-接线盒;2-保险套管3―绝缘套管4―热电偶丝1234第40页,共122页,2024年2月25日,星期天41(a)(b)(c)(d)

1322.铠装式热电偶(又称套管式热电偶)优点是小型化(直径从12mm到0.25mm)、寿命、热惯性小,使用方便。

测温范围在1100℃以下的有:镍铬—镍硅、镍铬—考铜铠装式热电偶。

断面如图所示。它是由热电偶丝、绝缘材料,金属套管三者拉细组合而成一体。又由于它的热端形状不同,可分为四种型式如图。图3.2-12铠装式热电偶断面结构示意图

1—

金属套管;2—绝缘材料;3—热电极

(a)—碰底型;(b)—不碰底型;(c)—露头型;(d)—帽型第41页,共122页,2024年2月25日,星期天423.快速反应薄膜热电偶用真空蒸镀等方法使两种热电极材料蒸镀到绝缘板上而形成薄膜装热电偶。如图,其热接点极薄(0.01~0.lμm)4123快速反应薄膜热电偶1—热电极;2—热接点;3—绝缘基板;4—引出线因此,特别适用于对壁面温度的快速测量。安装时,用粘结剂将它粘结在被测物体壁面上。目前我国试制的有铁—镍、铁—康铜和铜—康铜三种,尺寸为60×6×0.2mm;绝缘基板用云母、陶瓷片、玻璃及酚醛塑料纸等;测温范围在300℃以下;反应时间仅为几ms。第42页,共122页,2024年2月25日,星期天43

4.快速消耗微型热电偶下图为一种测量钢水温度的热电偶。它是用直径为Φ0.05~0.lmm的铂铑10一铂铑30热电偶装在U型石英管中,再铸以高温绝缘水泥,外面再用保护钢帽所组成。这种热电偶使用一次就焚化,但它的优点是热惯性小,只要注意它的动态标定,测量精度可达土5~7℃。1423567891110快速消耗微型1—刚帽;2—石英;3—纸环;4—绝热泥;5—冷端;6—棉花;7—绝缘纸管;8—补偿导线;9—套管;10—塑料插座;11—簧片与引出线第43页,共122页,2024年2月25日,星期天44方法冰点槽法计算修正法补正系数法零点迁移法冷端补偿器法软件处理法四、冷端处理及补偿原因热电偶热电势的大小是热端温度和冷端的函数差,为保证输出热电势是被测温度的单值函数,必须使冷端温度保持恒定;热电偶分度表给出的热电势是以冷端温度0℃为依据,否则会产生误差。第44页,共122页,2024年2月25日,星期天451.冰点槽法把热电偶的参比端置于冰水混合物容器里,使T0=0℃。这种办法仅限于科学实验中使用。为了避免冰水导电引起两个连接点短路,必须把连接点分别置于两个玻璃试管里,浸入同一冰点槽,使相互绝缘。mVABA’B’TCC’仪表铜导线试管补偿导线热电偶冰点槽冰水溶液四、冷端处理及补偿T0第45页,共122页,2024年2月25日,星期天462.计算修正法用普通室温计算出参比端实际温度TH,利用公式计算例用铜-康铜热电偶测某一温度T,参比端在室温环境TH中,测得热电动势EAB(T,TH)=1.999mV,又用室温计测出TH=21℃,查此种热电偶的分度表可知,EAB(21,0)=0.832mV,故得EAB(T,0)=EAB(T,21)+EAB(21,T0)=1.999+0.832=2.831(mV)再次查分度表,与2.831mV对应的热端温度T=68℃。注意:既不能只按1.999mV查表,认为T=49℃,也不能把49℃加上21℃,认为T=70℃。EAB(T,T0)=EAB(T,TH)+EAB(TH,T0)第46页,共122页,2024年2月25日,星期天473.补正系数法把参比端实际温度TH乘上系数k,加到由EAB(T,TH)查分度表所得的温度上,成为被测温度T。用公式表达即

式中:T——为未知的被测温度;T′——为参比端在室温下热电偶电势与分度表上对应的某个温度;TH——室温;k——为补正系数,其它参数见下表。例用铂铑10-铂热电偶测温,已知冷端温度TH=35℃,这时热电动势为11.348mV.查S型热电偶的分度表,得出与此相应的温度T′=1150℃。再从下表中查出,对应于1150℃的补正系数k=0.53。于是,被测温度

T=1150+0.53×35=1168.3(℃)用这种办法稍稍简单一些,比计算修正法误差可能大一点,但误差不大于0.14%。T=

T′+

kTH第47页,共122页,2024年2月25日,星期天48温度T´/℃补正系数k铂铑10-铂(S)镍铬-镍硅(K)1000.821.002000.721.003000.690.984000.660.985000.631.006000.620.967000.601.008000.591.009000.561.0010000.551.0711000.531.1112000.53—13000.52—14000.52—15000.53—16000.53—热电偶补正系数第48页,共122页,2024年2月25日,星期天49例用动圈仪表配合热电偶测温时,如果把仪表的机械零点调到室温TH的刻度上,在热电动势为零时,指针指示的温度值并不是0℃而是TH。而热电偶的冷端温度已是TH,则只有当热端温度T=TH时,才能使EAB(T,TH)=0,这样,指示值就和热端的实际温度一致了。这种办法非常简便,而且一劳永逸,只要冷端温度总保持在TH不变,指示值就永远正确。4.零点迁移法应用领域:如果冷端不是0℃,但十分稳定(如恒温车间或有空调的场所)。实质:在测量结果中人为地加一个恒定值,因为冷端温度稳定不变,电动势EAB(TH,0)是常数,利用指示仪表上调整零点的办法,加大某个适当的值而实现补偿。第49页,共122页,2024年2月25日,星期天505.冷端补偿器法利用不平衡电桥产生热电势补偿热电偶因冷端温度变化而引起热电势的变化值。不平衡电桥由R1、R2、R3(锰铜丝绕制)、RCu(铜丝绕制)四个桥臂和桥路电源组成。设计时,在0℃下使电桥平衡(R1=R2=R3=RCu),此时Uab=0,电桥对仪表读数无影响。冷端补偿器的作用注意:桥臂RCu必须和热电偶的冷端靠近,使处于同一温度之下。

mVEAB(T,T0)T0T0TAB++-abUUabRCuR1R2R3RT0UaUabEAB(T,T0)供电4V直流,在0~40℃或-20~20℃的范围起补偿作用。注意,不同材质的热电偶所配的冷端补偿器,其中的限流电阻R不一样,互换时必须重新调整。第50页,共122页,2024年2月25日,星期天516.软件处理法对于计算机系统,不必全靠硬件进行热电偶冷端处理。例如冷端温度恒定但不为0℃的情况,只需在采样后加一个与冷端温度对应的常数即可。对于T0经常波动的情况,可利用热敏电阻或其它传感器把T0信号输入计算机,按照运算公式设计一些程序,便能自动修正。后一种情况必须考虑输入的采样通道中除了热电动势之外还应该有冷端温度信号,如果多个热电偶的冷端温度不相同,还要分别采样,若占用的通道数太多,宜利用补偿导线把所有的冷端接到同一温度处,只用一个冷端温度传感器和一个修正T0的输入通道就可以了。冷端集中,对于提高多点巡检的速度也很有利。第51页,共122页,2024年2月25日,星期天521.热电偶的选择、安装使用热电偶的选用应该根据被测介质的温度、压力、介质性质、测温时间长短来选择热电偶和保护套管。其安装地点要有代表性,安装方法要正确,图3.2-17是安装在管道上常用的两种方法。在工业生产中,热电偶常与毫伏计连用(XCZ型动圈式仪表)或与电子电位差计联用,后者精度较高,且能自动记录。另外也可图3.2-17热电偶安装图通过与温度变送器经放大后再接指示仪表,或作为控制用的信号。五、热电偶的选择、安装使用和校验第52页,共122页,2024年2月25日,星期天53热电偶分度号校验温度/℃热电偶允许偏差/℃温度偏差温度偏差LB–3600,800,1000,12000~600±2.4>600占所测热电势的±0.4%EU–2400,600,800,1000~400±4>400占所测热电势的±0.75%EA–2300,400,6000~300±4>300占所测热电势的±1%2.热电偶的定期校验

校验的方法是用标准热电偶与被校验热电偶装在同一校验炉中进行对比,误差超过规定允许值为不合格。图为热电偶校验装置示意图,最佳校验方法可由查阅有关标准获得。工业热电偶的允许偏差,见下表。工业热电偶允许偏差第53页,共122页,2024年2月25日,星期天5478564321稳压电源220V热电偶校验图

1-调压变压器;2-管式电炉;3标准热电偶;4-被校热电偶;5-冰瓶;6-切换开关;7-测试仪表;8-试管第54页,共122页,2024年2月25日,星期天55

热敏电阻是利用某种半导体材料的电阻率随温度变化而变化的性质制成的。在温度传感器中应用最多的有热电偶、热电阻(如铂、铜电阻温度计等)和热敏电阻。热敏电阻发展最为迅速,由于其性能得到不断改进,稳定性已大为提高,在许多场合下(-40~+350℃)热敏电阻已逐渐取代传统的温度传感器。主要讲述热敏电阻的特点、分类,基本参数,主要特性和应用等。

第三节热敏电阻温度传感器第55页,共122页,2024年2月25日,星期天56(一)热敏电阻的特点

1.电阻温度系数的范围甚宽有正、负温度系数和在某一特定温度区域内阻值突变的三种热敏电阻元件。电阻温度系数的绝对值比金属大10~100倍左右。

2.材料加工容易、性能好

可根据使用要求加工成各种形状,特别是能够作到小型化。目前,最小的珠状热敏电阻其直径仅为0.2mm。

3.阻值在1~10M之间可供自由选择

使用时,一般可不必考虑线路引线电阻的影响;由于其功耗小、故不需采取冷端温度补偿,所以适合于远距离测温和控温使用。

一、热敏电阻的特点与分类第56页,共122页,2024年2月25日,星期天574.稳定性好

商品化产品已有30多年历史,加之近年在材料与工艺上不断得到改进。据报道,在0.01℃的小温度范围内,其稳定性可达0.0002℃的精度。相比之下,优于其它各种温度传感器。

5.原料资源丰富,价格低廉

烧结表面均已经玻璃封装。故可用于较恶劣环境条件;另外由于热敏电阻材料的迁移率很小,故其性能受磁场影响很小,这是十分可贵的特点。第57页,共122页,2024年2月25日,星期天58

热敏电阻的种类很多,分类方法也不相同。按热敏电阻的阻值与温度关系这一重要特性可分为:

1.正温度系数热敏电阻器(PTC)电阻值随温度升高而增大的电阻器,简称PTC热敏阻器。它的主要材料是掺杂的BaTiO3半导体陶瓷。

2.负温度系数热敏电阻器(NTC)电阻值随温度升高而下降的热敏电阻器简称NTC热敏电阻器。它的材料主要是一些过渡金属氧化物半导体陶瓷。

3.突变型负温度系数热敏电阻器(CTR该类电阻器的电阻值在某特定温度范围内随温度升高而降低3~4个数量级,即具有很大负温度系数。其主要材料是VO2并添加一些金属氧化物。

(二)热敏电阻的分类

第58页,共122页,2024年2月25日,星期天59热敏电阻材料的分类(1)大分类小分类代表例子NTC单晶金刚石、Ge、Si金刚石热敏电阻多晶迁移金属氧化物复合烧结体

、无缺陷形金属氧化烧结体多结晶单体

、固溶体形多结晶氧化物SiC系Mn、Co、Ni、Cu、Al氧化物烧结体、ZrY氧化物烧结体、还原性TiO3、Ge、SiBa、Co、Ni氧化物溅射SiC薄膜玻璃Ge、Fe、V等氧化物硫硒碲化合物玻璃V、P、Ba氧化物、Fe、Ba、Cu氧化物、Ge、Na、K氧化物、(As2Se3)0.8、(Sb2SeI)0.2有机物芳香族化合物聚酰亚釉表面活性添加剂液体电解质溶液熔融硫硒碲化合物水玻璃As、Se、Ge系第59页,共122页,2024年2月25日,星期天60热敏电阻材料的分类(2)PTC无机物BaTiO3系Zn、Ti、Ni氧化物系Si系、硫硒碲化合物(Ba、Sr、Pb)TiO3烧结体有机物石墨系有机物石墨、塑料石腊、聚乙烯、石墨液体三乙烯醇混合物三乙烯醇、水、NaClCTR

V、Ti氧化物系、Ag2S、(AgCu)、(ZnCdHg)BaTiO3单晶V、P、(Ba·Sr)氧化物Ag2S–CuS大分类小分类代表例子第60页,共122页,2024年2月25日,星期天611.标称电阻R25(冷阻)标称电阻值是热敏电阻在25±0.2℃时的阻值。

二、热敏电阻的基本参数2.材料常数BN是表征负温度系数(NTC)热敏电阻器材料的物理特性常数。BN值决定于材料的激活能∆E,具有BN=∆E/2k的函数关系,式中k为波尔兹曼常数。一般BN值越大,则电阻值越大,绝对灵敏度越高。在工作温度范围内,BN值并不是一个常数,而是随温度的升高略有增加的。3.电阻温度系数(%/℃)热敏电阻的温度变化1℃时电阻值的变化率。4.耗散系数H热敏电阻器温度变化1℃所耗散的功率变化量。在工作范围内,当环境温度变化时,H值随之变化,其大小与热敏电阻的结构、形状和所处介质的种类及状态有关。第61页,共122页,2024年2月25日,星期天626.最高工作温度Tmax热敏电阻器在规定的技术条件下长期连续工作所允许的最高温度:T0—环境温度;PE—环境温度为T0时的额定功率;H—耗散系数7.最低工作温度Tmin热敏电阻器在规定的技术条件下能长期连续工作的最低温度。8.转变点温度Tc热敏电阻器的电阻一温度特性曲线上的拐点温度,主要指正电阻温度系数热敏电阻和临界温度热敏电阻。5.时间常数τ热敏电阻器在零功率测量状态下,当环境温度突变时电阻器的温度变化量从开始到最终变量的63.2%所需的时间。它与热容量C和耗散系数H之间的关系第62页,共122页,2024年2月25日,星期天639.额定功率PE热敏电阻器在规定的条件下,长期连续负荷工作所允许的消耗功率。在此功率下,它自身温度不应超过Tmax。10.测量功率P0热敏电阻器在规定的环境温度下,受到测量电流加热而引起的电阻值变化不超过0.1%时所消耗的功率11.工作点电阻RG在规定的温度和正常气候条件下,施加一定的功率后使电阻器自热而达到某一给定的电阻值。12.工作点耗散功率PG电阻值达到RG时所消耗的功率。UG——电阻器达到热平衡时的端电压。第63页,共122页,2024年2月25日,星期天6413.功率灵敏度KG热敏电阻器在工作点附近消耗功率lmW时所引起电阻的变化,即:在工作范围内,KG随环境温度的变化略有改变。14.稳定性热敏电阻在各种气候、机械、电气等使用环境中,保持原有特性的能力。它可用热敏电阻器的主要参数变化率来表示。最常用的是以电阻值的年变化率或对应的温度变化率来表示。KG=R/P15.热电阻值RH指旁热式热敏电阻器在加热器上通过给定的工作电流时,电阻器达到热平衡状态时的电阻值。16.加热器电阻值Rr指旁热式热敏电阻器的加热器,在规定环境温度条件下的电阻值。第64页,共122页,2024年2月25日,星期天6518.标称工作电流I指在环境温度25℃时,旁热式热敏电阻器的电阻值被稳定在某一规定值时加热器内的电流。19.标称电压

它是稳压热敏电阻器在规定温度下标称工作电流所对应的电压值。20.元件尺寸指热敏电阻器的截面积A、电极间距离L和直径d。

17.最大加热电流Imax指旁热式热敏电阻器上允许通过的最大电流。第65页,共122页,2024年2月25日,星期天66(一)热敏电阻器的电阻——温度特性(RT—T)

1234铂丝40601201600100101102103104105106RT/Ω温度T/ºC热敏电阻的电阻--温度特性曲线1-NTC;2-CTR;

3-4PTC三、热敏电阻器主要特性ρT—T与RT—T特性曲线一致。第66页,共122页,2024年2月25日,星期天67RT、RT0——温度为T、T0时热敏电阻器的电阻值;

BN——NTC热敏电阻的材料常数。由测试结果表明,不管是由氧化物材料,还是由单晶体材料制成的NTC热敏电阻器,在不太宽的温度范围(小于450℃),都能利用该式,它仅是一个经验公式。1负电阻温度系数(NTC)热敏电阻器的温度特性NTC的电阻—温度关系的一般数学表达式为:如果以lnRT、1/T分别作为纵坐标和横坐标,则上式是一条斜率为BN

,通过点(1/T,lnRT)的一条直线,如图。第67页,共122页,2024年2月25日,星期天68105104103102

0-101030507085100120T/ºC电阻/ΩNTC热敏电阻器的电阻--温度曲线材料的不同或配方的比例和方法不同,则BN也不同。用lnRT–1/T表示负电阻温度系数热敏电阻—温度特性,在实际应用中比较方便。第68页,共122页,2024年2月25日,星期天69为了使用方便,常取环境温度为25℃作为参考温度(即T0=25℃),则NTC热敏电阻器的电阻—温度关系式:RT/R25——BN关系如下表。02550751001250.511.522.533.5(25ºC,1)RT/RT0--T特性曲线RT/R25T第69页,共122页,2024年2月25日,星期天70某热敏电阻阻值与温度关系第70页,共122页,2024年2月25日,星期天71RT/R25~BN系数表RT/R25BNR50/R2522002600280030003200340036003800400050000.5650.5000.4830.4580.4350.4130.3920.3720.3540.2733.1754.7205.3195.9936.7517.6098.65719.66010.8819.771.9632.2212.3622.5122.6712.8403.0203.2113.4144.6420.3470.2880.2590.2360.2140.1940.1760.1600.1460.0920.2270.1730.1490.1320.1150.1010.0880.0770.0670.0340.1130.0760.0620.0510.0420.0340.0280.0230.0190.007R0/R25R75/R25R-20/R25R150/R25R100/R25第71页,共122页,2024年2月25日,星期天722.正电阻温度系数(PTC)热敏电阻器的电阻—温度特性其特性是利用正温度热敏材料,在居里点附近结构发生相变引起导电率突变来取得的,典型特性曲线如图10000100010010050100150200250R20=120ΩR20=36.5ΩR20=12.2ΩPTC热敏电阻器的电阻—温度曲线T/ºC电阻/ΩTp1Tp2Tc=175ºC第72页,共122页,2024年2月25日,星期天73PTC热敏电阻的工作温度范围较窄,在工作区两端,电阻—温度曲线上有两个拐点:Tp1和Tp2。当温度低于Tp1时,温度灵敏度低;当温度升高到Tp1后,电阻值随温度值剧烈增高(按指数规律迅速增大);当温度升到Tp2时,正温度系数热敏电阻器在工作温度范围内存在温度Tc,对应有较大的温度系数αtp

经实验证实:在工作温度范围内,正温度系数热敏电阻器的电阻—温度特性可近似用下面的实验公式表示:式中RT、RT0——温度分别为T、T0时的电阻值;

BP——正温度系数热敏电阻器的材料常数。若对上式取对数,则得:以lnRT、T分别作为纵坐标和横坐标,便得到下图。第73页,共122页,2024年2月25日,星期天74

)可见:正温度系数热敏电阻器的电阻温度系数αtp

,正好等于它的材料常数BP的值。lnRr1lnRr2BPβmRBP=tgβ=mR/mrT1T2lnRr0mrlnRT~T表示的PTC热敏电阻器电阻—温度曲线lnRrT若对上式微分,可得PTC热敏电阻的电阻温度系数αtp第74页,共122页,2024年2月25日,星期天75αβabcdUmU0I0ImU/VI/mANTC热敏电阻的静态伏安特性(二)热敏电阻器的伏安特性(U—I)热敏电阻器伏安特性表示加在其两端的电压和通过的电流,在热敏电阻器和周围介质热平衡(即加在元件上的电功率和耗散功率相等)时的互相关系。1.负温度系数(NTC)热敏电阻器的伏安特性该曲线是在环境温度为T0时的静态介质中测出的静态U—I曲线。热敏电阻的端电压UT和通过它的电流I有如下关系:T0——环境温度;△T——热敏电阻的温升。第75页,共122页,2024年2月25日,星期天76曲线见下图,它与NTC热敏电阻器一样,曲线的起始段为直线,其斜率与热敏电阻器在环境温度下的电阻值相等。这是因为流过电阻器电流很小时,耗散功率引起的温升可以忽略不计的缘故。当热敏电阻器温度超过环境温度时,引起电阻值增大,曲线开始弯曲。

104103102101105Um10110210310010-1ImPTC热敏电阻器的静态伏安特性2.正温度系数(PTC)热敏电阻器的伏安特性

当电压增至Um时,存在一个电流最大值Im;如电压继续增加,由于温升引起电阻值增加速度超过电压增加的速度,电流反而减小,即曲线斜率由正变负。第76页,共122页,2024年2月25日,星期天77(a)(b)(c)(d)(e)(f)(g)(h)(i)65432112D0.2~0.5A型B型(j)温度检测用的各种热敏电阻器探头

1—热敏电阻;2—铂丝;3—银焊;4—钍镁丝;5—绝缘柱;6—玻璃四、热敏电阻器的应用1、各种热敏电阻传感器结构第77页,共122页,2024年2月25日,星期天782、

测表面电阻用的热敏电阻器安装方法

图为测表面温度用的热敏电阻器的各种安装方式。

(a)(b)(c)(d)(e)(f)(g)(h)油测量物体表面温度时热敏电阻器的安装方式第78页,共122页,2024年2月25日,星期天79123412345Ir/mAU/VUR=IT0RUR=IT1RUR=IT2RUR=IT0R0UR=IT1R1UR=IT2R2IT0IT1IT2自热电桥测量温线路3、

热敏电阻测温电桥

mAIrRURERrUT第79页,共122页,2024年2月25日,星期天80自热电桥及其等效电路RTR5R6R3(R1)En+

-+

-U2UTRITEURRr(a)(b)(c)R1EnAR1R2R4R3U’+

-第80页,共122页,2024年2月25日,星期天81设计原理:利用半导体PN结的电流电压与温度有关的特性。优点:输出线性好、测量精度高,传感驱动电路、信号处理电路等都与温度传感部分集成在一起,因而封装后的组件体积非常小,使用方便,价格便宜,故在测温技术中越来越得到广泛应用。本节简要介绍IC温度传感器的类型、基本原理、主要特性及其应用等有关问题。第四节IC温度传感器

第81页,共122页,2024年2月25日,星期天82一、IC温度传感器的分类电压型IC温度传感器;电流型IC温度传感器,数字输出型IC温度传感器。电流型IC温度传感器是把线性集成电路和与之相容的薄膜工艺元件集成在一块芯片上,再通过激光修版微加工技术,制造出性能优良的测温传感器。这种传感器的输出电流正比于热力学温度,即1μA/K;其次,因电流型输出恒流,所以传感器具有高输出阻抗。其值可达10MΩ。这为远距离传输深井测温提供了一种新型器件。电压型IC温度传感器是将温度传感器基准电压、缓冲放大器集成在同一芯片上,制成一四端器件。因器件有放大器;故输出电压高、线性输出为10mV/℃;另外,由于其具有输出阻抗低的特性;抗干扰能力强,故不适合长线传输。这类IC温度传感器特别适合于工业现场测量。第82页,共122页,2024年2月25日,星期天83

电流型IC温度传感器的测温原理,是基于晶体管的PN结随温度变化而产生漂移现象研制的。众所周知,晶体管PN结的这种温漂,会给电路的调整带来极大的麻烦。但是,利用PN结的温漂特性来测量温度,可研制成半导体温度传感元件。IC温度传感器就是依据半导体的温漂特性,经过精心设计而制造出来的集成化线性较好的温度传感器件。利用电流I与Tk的正比关系,通过电流的变化来测量温度的大小。二、IC温度传感器的测温原理第83页,共122页,2024年2月25日,星期天84(一)电压输出型集成温度传感器AN6701S是日本松下公司生产的电压输出型集成温度传感器,它有四个引脚,三种连线方式:(a)正电源供电,(b)负电源供电,(c)输出极性反相。电阻RC用来调整25℃下的输出电压,使其等于5V,RC的阻值在3~30kΩ范围内。这时灵敏度可达109~110mV/℃,在-10~80℃范围内基本误差不±1℃。输出AN6701(a)1243RC5~15VAN6701输出(c)10kΩRC31245~15V

-+∞+100kΩ10kΩ100kΩAN6701(b)213输出4-5~-15VRC三、IC温度传感器的主要特性第84页,共122页,2024年2月25日,星期天85输出电压/V024681012-20020406080RC=100kΩRC=10kΩRC=1kΩ温度/ºCAN6701S的输入特性在-10~80℃范围内,RC的值与输出特性的关系如下图。AN6701S有很好的线性,非线性误差不超过0.5%。若在25℃时借助RC将输出电压调整到5V,则RC的值约在3~30kΩ间,相应的灵敏度为109~110mV/℃。校准后,在-10~80℃范围内,基本误差不超过±1℃。这种集成传感器在静止空气中的时间常数为24s,在流动空气中为11s。电源电压在5~15V间变化,所引起的测温误差一般不超过±2℃。整个集成电路的电流值一般为0.4mA,最大不超过0.8mA(RL=∞时)。第85页,共122页,2024年2月25日,星期天86(二)电流型温度传感器1.伏安特性工作电压:4V~30V,I为一恒流值输出,I∝Tk,即KT——标定因子,AD590的标定因子为1μA/℃I=KT·TK

4V30V0I/μAU/VAD590伏安特性曲线-55℃+25℃+150℃218298423第86页,共122页,2024年2月25日,星期天87第87页,共122页,2024年2月25日,星期天88

-550150273.2μAI/μATC/ºCAD590温度特性曲线2.温度特性其温度特性曲线函数是以Tk为变量的n阶多项式之和,省略非线性项后则有:Tc——摄氏温度;I的单位为μA。

可见,当温度为0℃时,输出电流为273.2μA。在常温25℃时,标定输出电流为298.2μA。I=KT·Tc+273.2第88页,共122页,2024年2月25日,星期天893.AD590的非线性150-55△T/ºC0.3-0.30在实际应用中,ΔT通过硬件或软件进行补偿校正,使测温精度达±0.1℃。其次,AD590恒流输出,具有较好的抗干扰抑制比和高输出阻抗。当电源电压由+5V向+10V变化时,其电流变化仅为0.2μA/V。长时间漂移最大为±0.1℃,反向基极漏电流小于10pA。–55℃~100℃,ΔT递增,100℃~150℃则是递降。ΔT最大可达±3℃,最小ΔT<0.3℃,按档级分等。T/ºCAD590非线性误差曲线第89页,共122页,2024年2月25日,星期天90美国DALLAS公司生产的单总线数字温度传感器DS1820,可把温度信号直接转换成串行数字信号供微机处理。由于每片DS1820含有唯一的串行序列号,所以在一条总线上可挂接任意多个DS1820芯片。从DS1820读出的信息或写入DS1820的信息,仅需要一根口线(单总线接口)。读写及温度变换功率来源于数据总线,总线本身也可以向所挂接的DS1820供电,而无需额外电源。DS1820提供九位温度读数,构成多点温度检测系统而无需任何外围硬件。(三)数字输出型IC温度传感器目前已被改进型DS18B20所取代第90页,共122页,2024年2月25日,星期天91

1、DS1820的特性

单线接口:仅需一根口线与MCU连接;

无需外围元件;

由总线提供电源;

测温范围为-55℃~125℃,精度为0.5℃;

九位温度读数;

A/D变换时间为200ms;

用户可以任意设置温度上、下限报警值,且能够识别具体报警传感器。

第91页,共122页,2024年2月25日,星期天92DS1820123GNDI/OVDD(a)PR—35封装

DS1820的管脚排列DS182012345678I/OGND(b)SOIC封装NCNCNCNCVDDNC2、DS1820引脚及功能

GND:地;

VDD:电源电压

I/O:数据输入/输出脚(单线接口,可作寄生供电)第92页,共122页,2024年2月25日,星期天93

3、DS1820的工作原理图为DS1820的内部框图,它主要包括寄生电源、温度传感器、64位激光ROM单线接口、存放中间数据的高速暂存器(内含便笺式RAM),用于存储用户设定的温度上下限值的TH和TL触发器存储与控制逻辑、8位循环冗余校验码(CRC)发生器等七部分。存储器控制逻辑64bitROM和单线接口电源检测温度传感器高温触发器低温触发器8位CRC触发器存储器DS1820内部结构图第93页,共122页,2024年2月25日,星期天94寄生电源由两个二极管和寄生电容组成。电源检测电路用于判定供电方式。寄生电源供电时,电源端接地,器件从总线上获取电源。在I/O线呈低电平时,改由寄生电容上的电压继续向器件供电。寄生电源两个优点:检测远程温度时无需本地电源;缺少正常电源时也能读ROM。若采用外部电源,则通过二极管向器件供电。(1)寄生电源第94页,共122页,2024年2月25日,星期天95DS1820内部的低温度系数振荡器能产生稳定的频率信号f0,高温度系数振荡器则将被测温度转换成频率信号f.当计数门打开时,DS1820对f0计数,计数门开通时间由高温度系数振荡器决定。芯片内部还有斜率累加器,可对频率的非线性予以补偿。测量结果存入温度寄存器中。一般情况下的温度值应为9位(符号点1位),但因符号位扩展成高8位,故以16位补码形式读出,表3.4-1给出了DS1820温度和数字量的对应关系。第95页,共122页,2024年2月25日,星期天96温度/℃输出的二进制码对应的十六进制码+125000000001111101000FAH+2500000000001100100032H+1/200000000000000010001H000000000000000000000H-1/21111111111111111FFFFH-251111111111001110FFCEH-551111111110010010FF92HDS1820温度与数字量对应关系表

第96页,共122页,2024年2月25日,星期天97温度测量电路斜率累加器计数器1计数器2低温度系数晶振高温度系数晶振=0=0预置温度寄存器预置比较停止置位/清零加1(2)温度测量原理DS18

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论