版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省淮北市濉溪县2024年八年级数学第二学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知平行四边形中,,如果添加一个条件,使得该四边形成为正方形,那么所添加的这个条件可以是()A. B. C. D.2.某鞋店试销一款学生运动鞋,销量情况如图所示,鞋店经理要关心哪种型号的鞋是否畅销,下列统计量最有意义的是()型号22.52323.52424.5销量(双)5101583A.平均数 B.中位数 C.众数 D.方差3.如图,△ABC和△DCE都是等边三角形,点B、C、E在同一条直线上,BC=1,CE=2,连接BD,则BD的长为()A.3 B.2 C.2 D.4.一个菱形的周长是20,一条对角线长为6,则菱形的另一条对角线长为()A.4 B.5 C.8 D.105.如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2) B.(,2) C.(3﹣,2) D.(﹣2,2)6.如图,在中,,则的长为()A.2 B.4 C.6 D.87.在端午节到来之前,学校食堂推荐粽子专卖店的号三种粽子,对全校师生爱吃哪种粽子作调查,以决定最终的采购,下面的统计量中最值得关注的是()A.方差 B.平均数 C.众数 D.中位数8.已知点,,都在直线y=−3x+b上,则的值的大小关系是()A. B. C. D.9.已知,则的值为()A.2x5 B.—2 C.52x D.210.总书记提出了未来五年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×107 B.11.7×106 C.0.117×107 D.1.17×10811.若二次根式在实数范围内有意义,则a的取值范围是()A.a>1 B.a≥1 C.a=1 D.a≤112.下列运算错误的是()A. B. C. D.二、填空题(每题4分,共24分)13.①412=_________;②3-27=14.如果等腰直角三角形的一条腰长为1,则它底边的长=________.15.如图,小明同学在东西方向的环海路A处,测得海中灯塔P在北偏东60°方向上,在A处向正东方向行了100米到达B处,测得海中灯塔P在北偏东30°方向上,则灯塔P到环海路的距离PC=_____米.16.若直线y=kx+b中,k<0,b>0,则直线不经过第_____象限.17.正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=2,AE=8,则ED=_____.18.如图,在矩形中,点为射线上一动点,将沿折叠,得到若恰好落在射线上,则的长为________.三、解答题(共78分)19.(8分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B相距50米,结果他在水中实际游的路程比河的宽度多10米,求该河的宽度AB为多少米?20.(8分)在四个互不相等的正整数中,最大的数是8,中位数是4,求这四个数(按从小到大的顺序排列)21.(8分)如图是一块四边形的草坪ABCD,经测量得到以下数据:CD=AC=2BC=20m,AB=10m,∠ACD=90°.(1)求AD的长;(2)求∠ABC的度数;(3)求四边形ABCD的面积.22.(10分)某学习兴趣小组参加一次单元测验,成绩统计情况如下表.分数7374757677787982838486889092人数11543231112312(1)该兴趣小组有多少人?(2)兴趣小组本次单元测试成绩的平均数、中位数、众数各是多少?(3)老师打算为兴趣小组下单元考试设定一个新目标,学生达到或超过目标给予奖励,并希望小组三分之一左右的优秀学生得到奖励,请你帮老师从平均数、中位数、众数三个数中选择一个比较恰当的目标数;如果计划让一半左右的人都得到奖励,确定哪个数作为目标恰当些?23.(10分)手机可以通过“个人热点”功能实现移动网络共享,小明和小亮准备到操场上测试个人热点连接的有效距离,他们从相距的,两地相向而行.图中,分别表示小明、小亮两人离地的距离与步行时间之间的函数关系,其中的关系式为.根据图象回答下列问题:(1)请写出的关系式___________;(2)小明和小亮出发后经过了多长时间相遇?(3)如果手机个人热点连接的有效距离不超过,那么他们出发多长时间才能连接成功?连接持续了多长时间?24.(10分)如图1,在ABC中,∠A=80°,BD、CE分别平分∠ABC、∠ACB,BD与CE交于点F.(1)求∠BFC的度数;(2)如图2,EG、DG分别平分∠AEF、∠ADF,EG与DG交于点G,求∠EGD的度数.25.(12分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:(1)请将下表补充完整:(参考公式:方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2])平均数方差中位数甲77乙5.4(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,的成绩好些;②从平均数和中位数相结合看,的成绩好些;③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.26.如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,1),交y轴于点B(1,n),且m,n满足+(n﹣12)2=1.(1)求直线AB的解析式及C点坐标;(2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;(3)如图2,点E(1,﹣2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.
参考答案一、选择题(每题4分,共48分)1、C【解析】
由已知可得该四边形为矩形,再添加条件:一组邻边相等,即可判定为正方形.【详解】由∠A=∠B=∠C=90°可判定四边形ABCD为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD为正方形,故选:C.【点睛】本题考查正方形的判定.正方形的判定方法有:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角;③先判定四边形是平行四边形,再用1或2进行判定.2、C【解析】
众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【详解】对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.3、D【解析】
作DF⊥CE于F,构建两个直角三角形,运用勾股定理逐一解答即可.【详解】过D作DF⊥CE于F,根据等腰三角形的三线合一,得:CF=1,在直角三角形CDF中,根据勾股定理,得:DF2=CD2-CF2=22-12=3,在直角三角形BDF中,BF=BC+CF=1+1=2,根据勾股定理得:BD=,故选D.【点睛】本题考查了等边三角形的性质,勾股定理等,正确添加辅助线、熟练应用相关的性质与定理是解题的关键.4、C【解析】
首先根据题意画出图形,由菱形周长为20,可求得其边长,又由它的一条对角线长6,利用勾股定理即可求得菱形的另一条对角线长.【详解】如图,∵菱形ABCD的周长为20,对角线AC=6,
∴AB=5,AC⊥BD,OA=AC=3,
∴OB==4,
∴BD=2OB=1,
即菱形的另一条对角线长为1.
故选:C.【点睛】此题考查菱形的性质以及勾股定理.解题关键在于注意菱形的对角线互相平分且垂直.5、A【解析】
依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=-1,可得G(-1,2).【详解】如图,过点A作AH⊥x轴于H,AG与y轴交于点M,∵▱AOBC的顶点O(0,0),A(-1,2),∴AH=2,HO=1,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴MG=-1,∴G(-1,2),故选A.【点睛】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.6、B【解析】
由平行四边形的对角线互相平分,可得AO的长度.【详解】在中,,∴AO=故答案为B【点睛】本题考查了平行四边形对角线互相平分的性质,利用该性质是解题的关键.7、C【解析】
学校食堂最值得关注的应该是哪种粽子爱吃的人数最多,即众数.【详解】解:由于众数是数据中出现次数最多的数,故学校食堂最值得关注的应该是统计调查数据的众数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.8、A【解析】
先根据直线y=-3x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【详解】∵直线y=−3x+b,k=−3<0,
∴y随x的增大而减小,
又∵−2<−1<1,.故选:.【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是熟练掌握一次函数图象.9、C【解析】
结合1x2,根据绝对值和二次根式的进行计算,即可得到答案.【详解】因为1x2,所以==52x.故选择C.【点睛】本题考查不等式、绝对值和二次根式,解题的关键是掌握不等式、绝对值和二次根式.10、A【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.详解:11700000=1.17×1.
故选A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11、B【解析】
根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.【详解】由题意得:a﹣1≥0,解得:a≥1,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12、C【解析】
根据二次根的运算法则对选项进行判断即可【详解】A.,所以本选项正确B.,所以本选项正确C.,不是同类二次根式,不能合并,故本选项错误D.,所以本选项正确故选C.【点睛】本题考查二次根,熟练掌握二次根式的性质和运算法则是解题关键二、填空题(每题4分,共24分)13、①322,②-3,③4x【解析】
①根据二次根式的性质化简即可解答②根据立方根的性质计算即可解答③根据积的乘方,同底数幂的除法,进行计算即可解答【详解】①412=②3-27③(2x)2⋅x3÷【点睛】此题考查二次根式的性质,同底数幂的除法,解题关键在于掌握运算法则14、【解析】
根据等腰直角三角形两腰相等及勾股定理求解即可.【详解】解:∵等腰直角三角形的一腰长为1,则另一腰长也为1∴由勾股定理知,底边的长为故答案为:.【点睛】本题考查了等腰三角形的腰相等,勾股定理等知识点,熟练掌握基本的定理及图形的性质是解决此类题的关键.15、50【解析】
在图中两个直角三角形中,先根据已知角的正切函数,分别求出AC和BC,根据它们之间的关系,构建方程解答.【详解】由已知得,在Rt△PBC中,∠PBC=60°,PC=BCtan60°=BC,在Rt△APC中,∠PAC=30°,AC=PC=3BC=100+BC,解得,BC=50,∴PC=50(米),答:灯塔P到环海路的距离PC等于50米.故答案为:50【点睛】此题考查的知识点是解直角三角形的应用,关键明确解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.16、【解析】∵k<0,b>0,∴直线y=kx+b经过第一、二、四象限,故答案为一、二、四.17、1【解析】解:如图,过B作BP⊥EH于P,连接BE,交FH于N,则∠BPG=90°.∵四边形ABCD是正方形,∴∠BCD=∠ABC=∠BAD=90°,AB=BC,∴∠BCD=∠BPG=90°.∵GB平分∠CGE,∴∠EGB=∠CGB.又∵BG=BG,∴△BPG≌△BCG,∴∠PBG=∠CBG,BP=BC,∴AB=BP.∵∠BAE=∠BPE=90°,BE=BE,∴Rt△ABE≌Rt△PBE(HL),∴∠ABE=∠PBE,∴∠EBG=∠EBP+∠GBP=∠ABC=15°,由折叠得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形.∵BM=2,∴BN=NM=2,∴BE=1.∵AE=8,∴Rt△ABE中,AB==12,∴AD=12,∴DE=12﹣8=1.故答案为1.点睛:本题考查了翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.18、或15【解析】
如图1,根据折叠的性质得到AB=A=5,E=BE,根据勾股定理求出BE,如图2,根据折叠的性质得到A=AB=5,求得AB=BF=5,
根据勾股定理得到CF=4根据相似三角形的性质列方程即可得到结论.【详解】∵四边形ABCD是矩形,∴AD=BC=3,CD=AB=5,如图1,由折叠得AB=A=5,E=BE,∴,∴,在Rt△中,,∴,解得BE=;如图2,由折叠得AB=A=5,∵CD∥AB,∴∠=∠,∵,∴,∵AE垂直平分,∴BF=AB=5,∴,∵CF∥AB,∴△CEF∽△ABE,∴,∴,∴BE=15,故答案为:或15.【点睛】此题考查矩形的性质,折叠的性质,勾股定理,相似三角形的判定及性质,根据折叠的要求正确画出符合题意的图形进行解答是解题的关键.三、解答题(共78分)19、1200米【解析】试题分析:由题可看出,A,B,C三点构成一个直角三角形,AB,BC为直角边,AC,是斜边,可设AB=X,AC=10+X因为BC=50根据勾股定理可知考点:勾股定理,三角函数的值点评:本题属于勾股定理的基本运算和求解方法,在解题中需要合理的作图20、这四个数为或或.【解析】分析:根据中位数的定义得出第二个数和第三个数的和是8,再根据这四个数是不相等的正整数,得出这两个数是3、5或2、6,再根据这些数都是正整数得出第一个数是2或1,再把这四个数相加即可得出答案.详解:∵中位数是4,最大的数是8,∴第二个数和第三个数的和是8,∵这四个数是不相等的正整数,∴这两个数是3、5或2、6,∴这四个数是1,3,5,8或2,3,5,8或1,2,6,8,故答案为:1,2,6,8或1,3,5,8或2,3,5,8.点睛:此题考查了中位数,掌握中位数的概念是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.21、(1)40m;(2)∠ABC=90°;(3)cm2【解析】
(1)直接利用勾股定理计算即可;(2)由勾股定理得逆定理可得结果;(3)利用四边形ABCD的面积=即可得出结果.【详解】(1)解:在RtΔACD中,∠ACD=90°,根据勾股定理得:==40m(2)解:在ΔABC中,,,∴由勾股定理得逆定理得∴ΔABC是直角三角形,且∠ABC=90°(3)解:四边形ABCD的面积=(m2)【点睛】本题考查了勾股定理以及勾股定理的逆定理的应用,直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.22、(1)30;(2)平均数为80.3;中位数是78;众数是75;(3)如果希望小组三分之一左右的优秀学生得到奖励,老师可以选择平均数;如果计划让一半左右的人都得到奖励,确定中位数作为目标恰当些.【解析】
(1)将各分数人数相加即可;(2)根据平均数、中位数、众数的定义求解即可;(3)根据(2)中数据即可得出;如果计划让一半左右的人都得到奖励,确定中位数作为目标恰当些,因为中位数以上的人数占总人数的一半左右.【详解】(1)该兴趣小组人数为:1+1+5+4+3+2+3+1+1+1+2+3+1+2=30;(2)本次单元测试成绩的平均数为:(73+74+75×5+76×4+77×3+78×2+79×3+82+83+84+86×2+88×3+90+92×2)=80.3(分),表格中数据已经按照从小到大的顺序排列,一共有30个数,位于第15、第16的数都是78,所以中位数是(78+78)÷2=78(分),75出现了5次,次数最多,所以众数是75分;(3)由(2)可知,平均数为80.3分,中位数为78分,众数为75分,如果希望小组三分之一左右的优秀学生得到奖励,老师可以选择平均数;如果计划让一半左右的人都得到奖励,确定中位数作为目标恰当些,因为中位数以上的人数占总人数的一半左右.【点睛】此题考查众数,中位数,加权平均数,解题关键在于掌握各性质定义.23、(1);(2)经过后二者相遇;(3)出发时才能连接,持续了【解析】
(1)设的解析式为y=kx,把(100,100)代入求解即可;(2)把函数解析式联立方程组,求得方程组的解即可;
(3)设当出发时相距,小亮速度为,得出,求解即可得出出发32s才能连接成功;再求出t=48s连接断开,即可求出持续的时间.【详解】解:(1)设的解析式为y=kx,把(100,100)代入得,100=100k,∴k=1∴.故答案为y=x.(2)由题意得解得经过后二者相遇.(3)解:设当出发时相距,由题知,小亮速度为.解得,∴他们出发32s才能连接成功;当解得,即t=48s连接断开,故连接了出发时才能连接,持续了.【点睛】此题考查一次函数的实际运用,待定系数法求函数解析式,以及结合图象理解题意解决有关的行程问题.24、(1)130〬(2)155〬【解析】
(1)根据三角形的内角和是180°,可知∠BFC=180°-∠FBC-∠FCB,由BD,CE分别平分∠ABC,∠ACB,可知∠FBC=∠ABC,∠FCB=∠ACB,即∠BFC=180°-(∠ABC+∠ACB),再由三角形的内角和是180°,得出∠ABC+∠ACB=180°-∠A,从而求出∠BFC的度数;(2)由角平分线的定义可得,,由四边形内角和定理可知,继而得到,再根据四边形内角和定理即可求得答案.【详解】(1)∵BD、CE分别平分∠ABC、∠ACB,∴,,∵,∴∠BFC=;(2)∵EG、DG分别平分∠AEF、∠ADF,∴,,∵,∴,∴∠EGD.【点睛】本题考查了三角形内角和定理、四边形内角和定理,熟练掌握相关知识是解题的关键.注意数形结合思想的运用.25、(1)1.2,7,7.5;(2)甲,乙,乙,理由见解析.【解析】分析:(1)根据统计表,结合平均数、方差、中位数的定义,即可求出需要填写的内容.(2)①可分别从平均数和方差两方面着手进行比较;②可分别从平均数和中位数两方面着手进行比较;③可从具有培养价值方面说明理由.详解:解:(1)甲的方差[(9﹣7)2+(5﹣7)2+4×(7﹣7)2+2×(8﹣7)2+2×(6﹣7)2]=1.2,乙的平均数:(2+4+6+8+7+7+8+9+9+10)÷10=7,乙的中位数:(7+8)÷2=7.5,填表如下:平均数方差中位数甲71.27乙75.47.5(2)①从平均数和方差相结合看,甲的成绩好些;②从平均数和中位数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年BIM技术在地铁建设中的应用实例
- 贺银成课件笔记
- 2026春招:文员笔试题及答案
- 货运安全培训班讲话
- D打印技术在医疗领域应用前景分析
- 临床药事管理改进方案
- 货物搬运安全知识培训课件
- 医院医疗纠纷处理流程汇报
- 2026年蚌埠学院单招综合素质笔试参考题库带答案解析
- 医疗信息录入员的职业礼仪
- 幼儿园美术教育调查报告
- DB11T 2238-2024雪道施工技术规程
- 2023新高考数学立体几何大题专项练习
- 抗炎生活-演讲模板
- 专题六生命活动的调节途径及模型(原卷版)
- 建筑施工图制图标准规范及识图
- 研究生学术英语读写教程1-4单元翻译
- 物业服务部安全生产岗位责任清单
- 考点21 三角恒等变换4种常见考法归类(解析版)
- 2023年04月青海西宁大通县生态环境综合行政执法大队公开招聘编外工作人员2人笔试历年难易错点考题含答案带详细解析
- 2022年黑龙江省鹤岗市统招专升本生理学病理解剖学历年真题汇总及答案
评论
0/150
提交评论