2024年初中升学考试模拟测试卷湖北省荆州市中考数学试卷_第1页
2024年初中升学考试模拟测试卷湖北省荆州市中考数学试卷_第2页
2024年初中升学考试模拟测试卷湖北省荆州市中考数学试卷_第3页
2024年初中升学考试模拟测试卷湖北省荆州市中考数学试卷_第4页
2024年初中升学考试模拟测试卷湖北省荆州市中考数学试卷_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页(共1页)2023年湖北省荆州市中考数学试卷一、选择题(本大题共有10个小题,每小题只有唯一正确答案,每小题3分,共30分)1.(3分)(2023•荆州)在实数﹣1,,,3.14中,无理数是()A.﹣1 B. C. D.3.142.(3分)(2023•荆州)下列各式运算正确的是()A.3a2b3﹣2a2b3=a2b3 B.a2•a3=a6 C.a6÷a2=a3 D.(a2)3=a53.(3分)(2023•荆州)观察如图所示的几何体,下列关于其三视图的说法正确的是()A.主视图既是中心对称图形,又是轴对称图形 B.左视图既是中心对称图形,又是轴对称图形 C.俯视图既是中心对称图形,又是轴对称图形 D.主视图、左视图、俯视图都是中心对称图形4.(3分)(2023•荆州)已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系(I=).下列反映电流I与电阻R之间函数关系的图象大致是()A. B. C. D.5.(3分)(2023•荆州)已知k=(+)•(﹣),则与k最接近的整数为()A.2 B.3 C.4 D.56.(3分)(2023•荆州)为评估一种水稻的种植效果,选了10块地作试验田.这10块地的亩产量(单位:kg)分别为x1,x2,…,x10,下面给出的统计量中可以用来评估这种水稻亩产量稳定程度的是()A.这组数据的平均数 B.这组数据的方差 C.这组数据的众数 D.这组数据的中位数7.(3分)(2023•荆州)如图所示的“箭头”图形中,AB∥CD,∠B=∠D=80°,∠E=∠F=47°,则图中∠G的度数是()A.80° B.76° C.66° D.56°8.(3分)(2023•荆州)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还余4.5尺;将绳子对折再量木条,木条余1尺,问木条长多少尺?若设木条长x尺,绳子长y尺,则可列方程组为()A. B. C. D.9.(3分)(2023•荆州)如图,直线y=﹣x+3分别与x轴,y轴交于点A,B,将△OAB绕着点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标是()A.(2,5) B.(3,5) C.(5,2) D.(,2)10.(3分)(2023•荆州)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,B为上一点,OB⊥AC于D.若AC=300m,BD=150m,则的长为()A.300πm B.200πm C.150πm D.100πm二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2023•荆州)若|a﹣1|+(b﹣3)2=0,则=.12.(3分)(2023•荆州)如图,CD为Rt△ABC斜边AB上的中线,E为AC的中点.若AC=8,CD=5,则DE=.13.(3分)(2023•荆州)某校为了解学生对A,B,C,D四类运动的参与情况,随机调查了本校80名学生,让他们从中选择参与最多的一类,得到对应的人数分别是30,20,18,12.若该校有800名学生,则估计有人参与A类运动最多.14.(3分)(2023•荆州)如图,∠AOB=60°,点C在OB上,OC=2,P为∠AOB内一点.根据图中尺规作图痕迹推断,点P到OA的距离为.15.(3分)(2023•荆州)如图,无人机在空中A处测得某校旗杆顶部B的仰角为30°,底部C的俯角为60°,无人机与旗杆的水平距离AD为6m,则该校的旗杆高约为m.(≈1.73,结果精确到0.1)16.(3分)(2023•荆州)如图,点A(2,2)在双曲线y=(x>0)上,将直线OA向上平移若干个单位长度交y轴于点B,交双曲线于点C.若BC=2,则点C的坐标是.三、解答题(本大题共有8个小题,共72分)17.(8分)(2023•荆州)先化简,再求值:(﹣)÷,其中x=()﹣1,y=(﹣2023)0.18.(8分)(2023•荆州)已知关于x的一元二次方程kx2﹣(2k+4)x+k﹣6=0有两个不相等的实数根.(1)求k的取值范围;(2)当k=1时,用配方法解方程.19.(8分)(2023•荆州)如图,BD是等边△ABC的中线,以D为圆心,DB的长为半径画弧,交BC的延长线于E,连接DE.求证:CD=CE.20.(8分)(2023•荆州)首届楚文化节在荆州举办前,主办方为使参与服务的志愿者队伍整齐,随机抽取了部分志愿者,对其身高进行调查,将身高(单位:cm)数据分A,B,C,D,E五组制成了如下的统计图表(不完整).组别身高分组人数A155≤x<1603B160≤x<1652C165≤x<170mD170≤x<1755E175≤x<1804根据以上信息回答:(1)这次被调查身高的志愿者有人,表中的m=,扇形统计图中α的度数是;(2)若E组的4人中,男女各有2人,以抽签方式从中随机抽取两人担任组长.请列表或画树状图,求刚好抽中两名女志愿者的概率.21.(8分)(2023•荆州)如图,在菱形ABCD中,DH⊥AB于H,以DH为直径的⊙O分别交AD,BD于点E,F,连接EF.(1)求证:①CD是⊙O的切线;②△DEF∽△DBA;(2)若AB=5,DB=6,求sin∠DFE.22.(10分)(2023•荆州)荆州古城旁“荆街”某商铺打算购进A,B两种文创饰品对游客销售.已知1400元采购A种的件数是630元采购B种件数的2倍,A种的进价比B种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购B种的件数不低于390件,不超过A种件数的4倍.(1)求A,B饰品每件的进价分别为多少元?(2)若采购这两种饰品只有一种情况可优惠,即一次性采购A种超过150件时,A种超过的部分按进价打6折.设购进A种饰品x件,①求x的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.23.(10分)(2023•荆州)如图1,点P是线段AB上与点A,点B不重合的任意一点,在AB的同侧分别以A,P,B为顶点作∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB和射线BA,∠2的两边不在直线AB上,我们规定这三个角互为等联角,点P为等联点,线段AB为等联线.(1)如图2,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段AB为等联线、某格点P为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图3,在Rt△APC中,∠A=90°,AC>AP,延长AP至点B,使AB=AC,作∠A的等联角∠CPD和∠PBD.将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.①确定△PCF的形状,并说明理由;②若AP:PB=1:2,BF=k,求等联线AB和线段PE的长(用含k的式子表示).24.(12分)(2023•荆州)已知:y关于x的函数y=(a﹣2)x2+(a+1)x+b.(1)若函数的图象与坐标轴有两个公共点,且a=4b,则a的值是;(2)如图,若函数的图象为抛物线,与x轴有两个公共点A(﹣2,0),B(4,0),并与动直线l:x=m(0<m<4)交于点P,连接PA,PB,PC,BC,其中PA交y轴于点D,交BC于点E.设△PBE的面积为S1,△CDE的面积为S2.①当点P为抛物线顶点时,求△PBC的面积;②探究直线l在运动过程中,S1﹣S2是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.

2023年湖北省荆州市中考数学试卷参考答案与试题解析一、选择题(本大题共有10个小题,每小题只有唯一正确答案,每小题3分,共30分)1.(3分)(2023•荆州)在实数﹣1,,,3.14中,无理数是()A.﹣1 B. C. D.3.14【分析】无理数即无限不循环小数,据此进行判断即可.【解答】解:实数﹣1,,,3.14中,无理数是,故选:B.【点评】本题考查无理数的识别,其定义是基础且重要知识点,必须熟练掌握.2.(3分)(2023•荆州)下列各式运算正确的是()A.3a2b3﹣2a2b3=a2b3 B.a2•a3=a6 C.a6÷a2=a3 D.(a2)3=a5【分析】根据合并同类项的方法,以及同底数幂的乘法、除法的运算方法,幂的乘方与积的乘方,逐项判断即可.【解答】解:∵3a2b3﹣2a2b3=a2b3,∴选项A运算正确,符合题意;∵a2•a3=a5,∴选项B运算错误,不符合题意;∵a6÷a2=a4,∴选项C运算错误,不符合题意;∵(a2)3=a6,∴选项D运算错误,不符合题意.故选:A.【点评】此题主要考查了合并同类项的方法,以及同底数幂的乘法、除法的运算方法,幂的乘方与积的乘方,解答此题的关键是要明确:(1)同底数幂相乘,底数不变,指数相加;(2)同底数幂相除,底数不变,指数相减.3.(3分)(2023•荆州)观察如图所示的几何体,下列关于其三视图的说法正确的是()A.主视图既是中心对称图形,又是轴对称图形 B.左视图既是中心对称图形,又是轴对称图形 C.俯视图既是中心对称图形,又是轴对称图形 D.主视图、左视图、俯视图都是中心对称图形【分析】根据组合体的三视图判断即可.【解答】解:该几何体的主视图是轴对称图形,不是中心对称图形,A选项不符合题意;该几何体的左视图是轴对称图形,不是中心对称图形,B选项不符合题意;该几何体的俯视图是中心对称图形,又是轴对称图形,C选项符合题意;主视图和左视图是轴对称图形,不是中心对称图形,D选项不符合题意;故选:C.【点评】本题主要考查几何体的三视图,解题的关键是掌握简单几何体的三视图及轴对称图形、中心对称图形的概念.4.(3分)(2023•荆州)已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系(I=).下列反映电流I与电阻R之间函数关系的图象大致是()A. B. C. D.【分析】根据题意得到电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系(I=),于是得到结论.【解答】解:∵电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系(I=),R、I均大于0,∴反映电流I与电阻R之间函数关系的图象大致是D选项,故选:D.【点评】本题考查反比例函数的应用,解题的关键是学会利用图象信息解决问题,属于中考常考题型.5.(3分)(2023•荆州)已知k=(+)•(﹣),则与k最接近的整数为()A.2 B.3 C.4 D.5【分析】根据平方差公式进行计算,然后估算即可.【解答】解:∵k=(+)•(﹣)=×2=2,而1.4<<1.5,∴2.8<2<3,∴与k最接近的整数,3,故选:B.【点评】本题考查估算无理数的大小,平方差公式,解决本题的关键是掌握平方差公式.6.(3分)(2023•荆州)为评估一种水稻的种植效果,选了10块地作试验田.这10块地的亩产量(单位:kg)分别为x1,x2,…,x10,下面给出的统计量中可以用来评估这种水稻亩产量稳定程度的是()A.这组数据的平均数 B.这组数据的方差 C.这组数据的众数 D.这组数据的中位数【分析】根据平均数、众数和中位数及方差的意义求解即可.【解答】解:标准差,方差能反映数据的波动程度,故选:B.【点评】本题主要考查统计量的选择,解题的关键是掌握平均数、众数和中位数及方差的意义.7.(3分)(2023•荆州)如图所示的“箭头”图形中,AB∥CD,∠B=∠D=80°,∠E=∠F=47°,则图中∠G的度数是()A.80° B.76° C.66° D.56°【分析】延长AB交EG于M,延长CD交FG于N,过G作GK∥AB,得到GK∥CD,推出∠KGM=∠EMB,∠KGN=∠DNF,得到∠EGF=∠EMB+∠DNF,由三角形外角的性质得到∠EMB=33°,∠DNF=33°,即可求出∠EGF的度数.【解答】解:延长AB交EG于M,延长CD交FG于N,过G作GK∥AB,∵AB∥CD,∴GK∥CD,∴∠KGM=∠EMB,∠KGN=∠DNF,∴∠KGM+∠KGN=∠EMB+∠DNF,∴∠EGF=∠EMB+∠DNF,∵∠ABE=80°,∠E=47°,∴∠EMB=∠ABE﹣∠E=33°,同理:∠DNF=33°,∴∠EGF=∠EMB+∠DNF=33°+33°=66°.故选:C.【点评】本题考查平行线的性质,三角形外角的性质,关键是通过作辅助线,由平行线的性质,得到∠EGF=∠EMB+∠DNF,由三角形外角的性质求出∠EMB、∠DNF的度数,即可解决问题.8.(3分)(2023•荆州)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还余4.5尺;将绳子对折再量木条,木条余1尺,问木条长多少尺?若设木条长x尺,绳子长y尺,则可列方程组为()A. B. C. D.【分析】根据“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设木条长x尺,绳子长y尺,所列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)(2023•荆州)如图,直线y=﹣x+3分别与x轴,y轴交于点A,B,将△OAB绕着点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标是()A.(2,5) B.(3,5) C.(5,2) D.(,2)【分析】先根据坐标轴上点的坐标特征求出B点坐标为(0,3),A点坐标为(2,0),则OA=2,OB=3,再根据旋转的性质得∠OAC=90°,∠ACD=∠AOB=90°,AC=AO=2,CD=OB=3,然后根据点的坐标的确定方法即可得到点D的坐标.【解答】解:当x=0时,y=﹣x+3=3,则B点坐标为(0,3);当y=0时,﹣x+3=0,解得x=2,则A点坐标为(2,0),则OA=2,OB=3,∵△AOB绕点A顺时针旋转90°后得到△ACD,∴∠OAC=90°,∠ACD=∠AOB=90°,AC=AO=2,CD=OB=3,即AC⊥x轴,CD∥x轴,∴点D的坐标为(5,2).故选:C.【点评】本题考查的是一次函数图象上点的坐标特点、一次函数的性质及旋转的性质,熟知图形旋转后对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等是解题的关键.10.(3分)(2023•荆州)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,B为上一点,OB⊥AC于D.若AC=300m,BD=150m,则的长为()A.300πm B.200πm C.150πm D.100πm【分析】先根据垂径定理求出AD的长,由题意得OD=OA﹣BD,在Rt△AOD中利用勾股定理即可求出OA的值,然后再利用三角比计算出所对的圆心角的度数,由弧长公式求出的长即可.【解答】解:如图所示:∵OB⊥AC,∴AD=AC=150m,∠AOC=2AOB,在Rt△AOD中,∵AD2+OD2=OA2,OA=OB,∴AD2+(OA﹣BD)2=OA2,∴+(OA﹣150)2²=OA2,解得:OA=300m,∴sin∠AOB==,∴∠AOB=60°,∴∠AOC=120°,∴的长==200πm.故选:B.【点评】本题考查的是垂径定理,勾股定理及弧长的计算公式,根据垂径定理得出AD的长,再由勾股定理求出半径是解答此题的关键,同时要熟记圆弧长度的计算公式.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2023•荆州)若|a﹣1|+(b﹣3)2=0,则=2.【分析】根据绝对值及偶次幂的非负性求得a,b的值,然后代入中计算即可.【解答】解:|a﹣1|+(b﹣3)2=0,∵|a﹣1|≥0,(b﹣3)2≥0,∴a﹣1=0,b﹣3=0,则a=1,b=3,那么==2,故答案为:2.【点评】本题考查绝对值及偶次幂的非负性和算术平方根的定义,结合已知条件求得a,b的值是解题的关键.12.(3分)(2023•荆州)如图,CD为Rt△ABC斜边AB上的中线,E为AC的中点.若AC=8,CD=5,则DE=3.【分析】根据直角三角形斜边上的中线的性质得到AB=2CD=10,根据勾股定理得到BC==6,根据三角形中位线定理即可得到结论.【解答】解:∵CD为Rt△ABC斜边AB上的中线,CD=5,∴AB=2CD=10,∵∠ACB=90°,AC=8,∴BC==6,∵E为AC的中点,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC=3,故答案为:3.【点评】本题考查了直角三角形斜边上的中线,勾股定理,三角形中位线定理,熟练掌握直角三角形的性质是解题的关键.13.(3分)(2023•荆州)某校为了解学生对A,B,C,D四类运动的参与情况,随机调查了本校80名学生,让他们从中选择参与最多的一类,得到对应的人数分别是30,20,18,12.若该校有800名学生,则估计有300人参与A类运动最多.【分析】根据用样本估计总体,列出算式计算即可求解.【解答】解:800×=300(人).故估计有300人参与A类运动最多.故答案为:300.【点评】本题考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.14.(3分)(2023•荆州)如图,∠AOB=60°,点C在OB上,OC=2,P为∠AOB内一点.根据图中尺规作图痕迹推断,点P到OA的距离为1.【分析】由作图知PE垂直平分OC,CO平分∠AOB,根据线段垂直平分线的性质得到OE=OC=,∠PEO=90°,根据角平分线的定义得到∠POD=∠AOC==30°,根据三角函数的定义得到EP=OE×tan30°=,根据角平分线的性质即可得到结论.【解答】解:由作图知PE垂直平分OC,PO平分∠AOB,∴OE=OC=,∠PEO=90°,∵∠AOB=60°,∴∠POE=∠AOP==30°,∴EP=OE×tan30°=,∵CO平分∠AOB,∴点P到OA的距离=PE=1.故答案为:1.【点评】此题主要考查了作图﹣基本作图.以及角平分线的性质,关键是掌握角平分线的性质.15.(3分)(2023•荆州)如图,无人机在空中A处测得某校旗杆顶部B的仰角为30°,底部C的俯角为60°,无人机与旗杆的水平距离AD为6m,则该校的旗杆高约为13.8m.(≈1.73,结果精确到0.1)【分析】分别利用锐角三角函数关系得出BD,DC的长,进而求出该旗杆的高度.【解答】解:由题意可得:tan30°=,解得:BD=2(米),tan60°=,解得:DC=6(米),故该校的旗杆高约为:BC=BD+DC=8≈13.8(米),故答案为:13.8.【点评】此题主要考查了解直角三角形的应用﹣仰角俯角,熟练应用锐角三角函数关系是解题关键.16.(3分)(2023•荆州)如图,点A(2,2)在双曲线y=(x>0)上,将直线OA向上平移若干个单位长度交y轴于点B,交双曲线于点C.若BC=2,则点C的坐标是(,2).【分析】由题意,点A(2,2),则∠AOx=45°,同时可得双曲线解析式,再作CH⊥x轴,作BG⊥CH,可得∠CBG=45°,又BC=2,再结合双曲线解析式可以得解.【解答】解:∵点A(2,2)在双曲线y=(x>0)上,∴2=.∴k=4.∴双曲线解析式为y=.如图,作AD⊥x轴,CH⊥x轴,作BG⊥CH,垂足分别为D、H、G.∵A(2,2),∴AD=OD.∴∠AOD=45°.∴∠AOB=45°.∵OA∥BC,∴∠CBO=180°﹣45°=135°.∴∠CBG=135°﹣90°=45°.∴∠CBG=∠BCG.∵BC=2,∴BG=CG=.∴C点的横坐标为.又C在双曲线y=上,∴C(,2).故答案为:(,2).【点评】本题考查了反比例函数的图象与性质的应用,需要熟练掌握并理解.三、解答题(本大题共有8个小题,共72分)17.(8分)(2023•荆州)先化简,再求值:(﹣)÷,其中x=()﹣1,y=(﹣2023)0.【分析】先进行分式的化简,再根据零指数幂,负整数指数幂求出x,y的值,进而代入求值即可.【解答】解:原式=[﹣]•=(﹣)•=•=,∵x=()﹣1=2,y=(﹣2023)0=1,∴原式==2.【点评】本题考查了分式的化简求值,零指数幂,负整数指数幂,解决本题的关键是准确进行分式化简.18.(8分)(2023•荆州)已知关于x的一元二次方程kx2﹣(2k+4)x+k﹣6=0有两个不相等的实数根.(1)求k的取值范围;(2)当k=1时,用配方法解方程.【分析】(1)结合已知条件,根据一元二次方程的定义及根的判别式即可求得k的取值范围;(2)将k=1代入方程,利用配方法解方程即可.【解答】解:(1)∵关于x的一元二次方程kx2﹣(2k+4)x+k﹣6=0有两个不相等的实数根,∴Δ=(2k+4)2﹣4k(k﹣6)>0,且k≠0,解得:k>﹣且k≠0;(2)当k=1时,原方程为x2﹣(2×1+4)x+1﹣6=0,即x2﹣6x﹣5=0,移项得:x2﹣6x=5,配方得:x2﹣6x+9=5+9,即(x﹣3)2=14,直接开平方得:x﹣3=±解得:x1=3+,x2=3﹣.【点评】本题考查一元二次方程的定义,根的判别式及配方法解一元二次方程,(1)中需特别注意二次项的系数不为0.19.(8分)(2023•荆州)如图,BD是等边△ABC的中线,以D为圆心,DB的长为半径画弧,交BC的延长线于E,连接DE.求证:CD=CE.【分析】根据等边三角形的性质得到BD⊥AC,∠ACB=60°,求得∠DBC=30°,根据等腰三角形的性质得到∠E=∠DBC=30°,求得∠E=∠2=30°,根据等腰三角形的判定定理即可得到结论.【解答】证明:∵BD是等边△ABC的中线,∴BD⊥AC,∠ACB=60°,∴∠DBC=30°,∵BD=DE,∴∠E=∠DBC=30°,∵∠CDE+∠E=∠ACB=60°,∴∠E=∠2=30°,∴CD=CE.【点评】本题考查了等边三角形的性质,等腰三角形的判定和性质,熟练掌握等边三角形的性质是解题的关键.20.(8分)(2023•荆州)首届楚文化节在荆州举办前,主办方为使参与服务的志愿者队伍整齐,随机抽取了部分志愿者,对其身高进行调查,将身高(单位:cm)数据分A,B,C,D,E五组制成了如下的统计图表(不完整).组别身高分组人数A155≤x<1603B160≤x<1652C165≤x<170mD170≤x<1755E175≤x<1804根据以上信息回答:(1)这次被调查身高的志愿者有20人,表中的m=6,扇形统计图中α的度数是54°;(2)若E组的4人中,男女各有2人,以抽签方式从中随机抽取两人担任组长.请列表或画树状图,求刚好抽中两名女志愿者的概率.【分析】(1)由A、B、D、E四组的人数除以所占百分比得出这次被调查身高的志愿者人数,即可解决问题;(2)画树状图,求得有12种等可能的结果,其中刚好抽中两名女志愿者的结果有2种,再由概率公式求解即可.【解答】解:(1)这次被调查身高的志愿者有:(3+2+5+4)÷(1﹣30%)=20(人),∴m=20×30%=6,扇形统计图中α的度数是:360°×=54°,故答案为:20,6,54°;(2)画树状图如下:共有12种等可能的结果,其中刚好抽中两名女志愿者的结果有2种,∴P(刚好抽中两名女志愿者)==.【点评】本题考查了树状图法求概率以及频数分布表和扇形统计图等知识,树状图法可以不重不漏的列举出所有可能发生的情况,适合于两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)(2023•荆州)如图,在菱形ABCD中,DH⊥AB于H,以DH为直径的⊙O分别交AD,BD于点E,F,连接EF.(1)求证:①CD是⊙O的切线;②△DEF∽△DBA;(2)若AB=5,DB=6,求sin∠DFE.【分析】(1)①由四边形ABCD是菱形,DH⊥AB,可得∠CDH=∠DHA=90°,CD⊥OD,故CD是⊙O的切线;②连接HF,由DH为⊙O直径,有∠DFH=90°,可得∠DHF=∠DBA=∠DEF,又∠EDF=∠BDA,从而△DEF∽△DBA;(2)连接AC交BD于G.由菱形ABCD,BD=6,得AC⊥BD,AG=GC,DG=GB=3,AG==4,故AC=2AG=8,用面积法可得DH=,即得sin∠DEE=sin∠DAH==.【解答】(1)证明:①∵四边形ABCD是菱形,∴AB∥CD,∵DH⊥AB,∴∠CDH=∠DHA=90°,∴CD⊥OD,∵D为⊙O的半径的外端点,∴CD是⊙O的切线;②连接HF,∴∠DEF=∠DHF,∵DH为⊙O直径,∴∠DFH=90°,∴∠DHF=90°﹣∠BDH,∵∠DHB=90°,∴∠DBA=90°﹣∠BDH,∴∠DHF=∠DBA=∠DEF,∵∠EDF=∠BDA,∴△DEF∽△DBA;(2)解:连接AC交BD于G.∵菱形ABCD,BD=6,∴AC⊥BD,AG=GC,DG=GB=3,在Rt△AGB中,AG==4,∴AC=2AG=8,∵S菱形ABCD=AC•BD=AB•DH,∴DH==,由△DEF∽△DBA知:∠DFE=∠DAH,∴sin∠DEE=sin∠DAH===.【点评】本题考查圆的综合应用,涉及锐角三角函数,勾股定理,菱形等知识,解题的关键是掌握相似三角形的判定与性质定理.22.(10分)(2023•荆州)荆州古城旁“荆街”某商铺打算购进A,B两种文创饰品对游客销售.已知1400元采购A种的件数是630元采购B种件数的2倍,A种的进价比B种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购B种的件数不低于390件,不超过A种件数的4倍.(1)求A,B饰品每件的进价分别为多少元?(2)若采购这两种饰品只有一种情况可优惠,即一次性采购A种超过150件时,A种超过的部分按进价打6折.设购进A种饰品x件,①求x的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.【分析】(1)设A种饰品每件的进价为a元,则B种饰品每件的进价为(a﹣1)元,利用数量=总价÷单价,结合用1400元采购A种的件数是630元采购B种件数的2倍,即可得出关于a的分式方程,解之经检验后即可得出每台A种电器的进价,再将其代入(a﹣1)中即可求出每台B种电器的进价;(2)①利用“计划采购这两种饰品共600件,采购B种的件数不低于390件,不超过A种件数的4倍“列不等式组可得结论;②设采购A种饰品x件时的总利润为w元,分两种情况:当120≤x≤150时,当150<x≤210时,分别表示w与x的关系式根据增减性可解答.【解答】解:(1)设A种饰品每件的进价为a元,则B种饰品每件的进价为(a﹣1)元,由题意得:=×2,解得:a=10,经检验,a=10是所列方程的解,且符合题意,a﹣1=9,答:A种饰品每件的进价为10元,则B种饰品每件的进价为9元;(2)①由题意得:,解得:120≤x≤210,∴购进A种饰品件数x的取值范围为:120≤x≤210,且x为整数;②设采购A种饰品x件时的总利润为w元,当120≤x≤150时,w=15×600﹣10x﹣9(600﹣x)=﹣x+3600,∵﹣1<0,∴w随x的增大而减小,∴当x=120时,w有最大值是:﹣120+3600=3480,当150<x≤210时,w=15×600﹣[10×150+10×60%(x﹣150)]﹣9(600﹣x)=3x+3000,∵3>0,∴w随x的增大而增大,∴当x=210时,w有最大值是:3×210+3000=3630,∵3630>3480,∴w的最大值是3630,此时600﹣x=600﹣210=390,即当采购A种饰品210件,B种饰品390件,商铺获利最大,最大利润为3630元.【点评】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.23.(10分)(2023•荆州)如图1,点P是线段AB上与点A,点B不重合的任意一点,在AB的同侧分别以A,P,B为顶点作∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB和射线BA,∠2的两边不在直线AB上,我们规定这三个角互为等联角,点P为等联点,线段AB为等联线.(1)如图2,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段AB为等联线、某格点P为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图3,在Rt△APC中,∠A=90°,AC>AP,延长AP至点B,使AB=AC,作∠A的等联角∠CPD和∠PBD.将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.①确定△PCF的形状,并说明理由;②若AP:PB=1:2,BF=k,求等联线AB和线段PE的长(用含k的式子表示).【分析】(1)根据新定义,画出等联角即可;(2)①△PCF是等腰直角三角形,过点C作CN⊥BE交BE的延长线于N,由折叠得AC=CM,∠CMP=∠CME=∠A=90°,∠1=∠2,证明四边形ABNC为正方形,进而证明Rt△CME≌Rt△CNE,得出∠PCF=45°,即可求解;②过点F作FQ⊥BE于Q,FR⊥PB交PB的延长线于R,则∠R=∠A=90°.证明△APC≌△RFP,得出AP=BR=FR,在Rt△BRF中,BR2+FR2=BF2,,进而证明四边形BRFQ为正方形,则BQ=QF=k,由FQ∥CN,得出△AEF∽△NEC,根据相似三角形的性质得出,根据PE=PM+ME即可.【解答】解:(1)作图如下:(方法不唯一)(2)①△PCF是等腰直角三角形.理由为:如图,过点C作CN⊥BE交BE的延长线于N.由折叠得AC=CM,∠CMP=∠CME=∠A=90°,∠1=∠2,∵AC=AB,∠A=∠PBD=∠N=90°,∴四边形ABNC为正方形,∴CN=AC=CM,又∵CE=CE,∴Rt△CME≌Rt△CNE(HL),∴∠3=∠4,而∠1+∠2+∠3+∠4=90°,∠CPF=90°,∴∠PCF=∠2+∠3=∠CFP=45°,∴△PCF是等腰直角三角形.②如图,过点F作FQ⊥BE于Q,FR⊥PB交PB的延长线于R,则∠R=∠A=90°,∵∠1+∠5=∠5+∠6=90°,∴∠1=∠6,由△PCF是等腰直角三角形知:PC=PF,∴△APC≌△RFP(AAS),∴AP=FR,AC=PR,而AC=AB,∴AP=BR=FR,在Rt△BRF中,BR2+FR2=BF2,,∴AP=BR=FR=k,∴PB=2AP=2k,∴AB=AP+PB=BN=3k,∵BR=FR,∠QBR=∠R=∠FQB=90°,∴四边形BRFQ为正方形,BQ=OF=k,∵FQ⊥BN,CN⊥BN,∴FQ∥CN,∴,而QE=BN﹣NE﹣BQ=3k﹣NE﹣k=2k﹣NE,∴,解得:k,由①知:PM=AP=k,,∴,答:等联线AB=3k,线段PE=.【点评】本题考查了几何新定义,正方形的性质与判定,折叠问题,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理,理解新定义,掌握正方形的性质是解题的关键.24.(12分)(2023•荆州)已知:y关于x的函数y=(a﹣2)x2+(a+1)x+b.(1)若函数的图象与坐标轴有两个公共点,且a=4b,则a的值是0或2或﹣;(2)如图,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论