2022年广东省清远市禾云中学高一数学文模拟试题含解析_第1页
2022年广东省清远市禾云中学高一数学文模拟试题含解析_第2页
2022年广东省清远市禾云中学高一数学文模拟试题含解析_第3页
2022年广东省清远市禾云中学高一数学文模拟试题含解析_第4页
2022年广东省清远市禾云中学高一数学文模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年广东省清远市禾云中学高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知角α的终边过点(-1,2),则cosα的值为(

).A.

B.

C.-

D.参考答案:B2.已知函数f(x)=,函数g(x)=f(x)﹣k有3个零点,则实数k的取值范围为()A.(0,+∞) B.[1,+∞) C.(0,2) D.(1,2]参考答案:D【考点】函数零点的判定定理.【分析】函数g(x)=f(x)﹣k有3个零点可化为函数f(x)与y=k有3个不同的交点,从而作图,结合图象求解即可.【解答】解:∵函数g(x)=f(x)﹣k有3个零点,∴方程f(x)=k有且只有3个解,∴函数f(x)与y=k有3个不同的交点,∴作函数f(x)=与y=k的图象如下,,结合图象可知,1<k≤2,故选D.3.函数在定义域内零点的个数为A.0

B.1

C.2

D.3参考答案:C4.设,若关于x的不等式在区间[1,2]上有解,则(

)A. B. C. D.参考答案:D【分析】根据题意得不等式对应的二次函数开口向上,分别讨论三种情况即可。【详解】由题意得:当当当综上所述:,选D.【点睛】本题主要考查了含参一元二次不等式中参数的取值范围。解这类题通常分三种情况:。有时还需要结合韦达定理进行解决。5.已知点,点是圆上任意一点,则面积的最大值是(

)A. B. C. D.参考答案:B【分析】求出直线的方程,计算出圆心到直线的距离,可知的最大高度为,并计算出,最后利用三角形的面积公式可得出结果.【详解】直线的方程,且,圆的圆心坐标为,半径长为,圆心到直线的距离为,所以,点到直线距离的最大值为,因此,面积的最大值为,故选:B.【点睛】本题考查三角形面积的最值问题,考查圆的几何性质,当直线与圆相离时,若圆的半径为,圆心到直线的距离为,则圆上一点到直线距离的最大值为,距离的最小值为,要熟悉相关结论的应用.6.函数的图像(

)A.关于原点对称

B.关于轴对称

C.关于轴对称

D.关于直线轴对称参考答案:C7.若,的化简结果为

)A.

B. C. D.参考答案:D略8.在斜二测画法中,与坐标轴不垂直的线段的长度在直观图中(

A.可能不变

B.变小

C.变大

D.一定改变参考答案:A略9.已知向量=(1,1,0),=(﹣1,0,2)且k+与2﹣互相垂直,则k的值是()A.1 B. C. D.参考答案:D【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】由向量=(1,1,0),=(﹣1,0,2),求得k+与2﹣的坐标,代入数量积的坐标表示求得k值.【解答】解:∵=(1,1,0),=(﹣1,0,2),∴k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),又k+与2﹣互相垂直,∴3(k﹣1)+2k﹣4=0,解得:k=.故选:D.【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.10.若l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l∥α,m∥α,则l∥m B.若l⊥m,m?α,则l⊥αC.若l∥α,m?α,则l∥m D.若l⊥α,l∥m,则m⊥α参考答案:D【考点】空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系.【分析】A.若l∥α,m∥α,则l∥m或相交或为异面直线,即可判断出真假;B.若l⊥m,m?α,则l与α相交或平行,即可判断出真假;C.若l∥α,m?α,则l∥m或为异面直线,即可判断出真假;D.由线面垂直的性质定理与判定定理可得正确.【解答】解:A.若l∥α,m∥α,则l∥m或相交或为异面直线,因此不正确;B.若l⊥m,m?α,则l与α相交或平行,因此不正确;C.若l∥α,m?α,则l∥m或为异面直线,因此不正确;D.若l⊥α,l∥m,则由线面垂直的性质定理与判定定理可得:m⊥α,正确.故选:D.【点评】本题考查了空间线面面面位置关系的判定及其性质定理,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.是第四象限角,,则

参考答案:略12.设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B=;②若B={1,2},则A∩B=.参考答案:{0,1},{1}或?.【考点】交集及其运算.【专题】对应思想;定义法;集合.【分析】①根据题意写出对应的集合B,计算A∩B即可;②根据题意写出对应的集合A,计算A∩B即可.【解答】解:①根据题意,A={0,1,2},通过对应关系f:x→,B={0,1,},所以A∩B={0,1};②根据题意,B={1,2}时,过对应关系f:x→,得A={1}或{4}或{1,4};所以A∩B={1}或?.故答案为:{0,1},{1}或?.【点评】本题考查了映射的定义与集合的运算问题,是基础题目.13.在⊿ABC中,若sinA:sinB:sinC=3:5:7,则∠C等于

参考答案:

120o

14.在空间直角坐标系中,点与点的距离为.参考答案:15.已知△ABC中,AC=4,,,于点D,则的值为

.参考答案:设,

由余弦定理可得:,

化为,解得.

设.

∵于点D,

∴解得,

16.已知

在区间上有且仅有一次既取得最大值,又取得最小值的机会,则的取值范围为___________参考答案:17.比较大小:403(6)

217(8)参考答案:>略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知,.(1)若a=1,求A∪B;(2)若AB,求实数a的取值范围.参考答案:解:(Ⅰ),当时,

(Ⅱ)由题意可知,得

19.已知函数,,最小值为.(1)求当时,求的值;(2)求的表达式;(3)当时,要使关于t的方程有一个实数根,求实数k的取值范围.参考答案:(1)-4(2)(3)【分析】(1)直接代入计算得解;(2)先求出,再对t分三种情况讨论,结合二次函数求出的表达式;(3)令,即有一个实数根,利用一次函数性质分析得解.【详解】(1)当时,,所以.(2)因为,所以,所以()当时,则当时,当时,则当时,当时,则当时,故(3)当时,,令即欲使有一个实根,则只需或解得或.所以的范围:.【点睛】本题主要考查三角函数的范围的计算,考查二次函数的最值的求法和方程的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.20.△ABC的三个内角A,B,C所对的边分别为a,b,c,.(1)求;(2)若,求B.参考答案:解:(1)由正弦定理得,,即故………………6分(2)由余弦定理和由(1)知故可得…………12分【分析】(1)根据条件中恒等式的特点,利用正弦定理的变形将式子转化,再利用同角三角函数的平方关系消去角,从而得到.(2)利用式子,分别用表示,结合余弦定理求出.【详解】解:(1)由正弦定理,得,所以,所以.(2)由余弦定理及,可得.由(1)知,故.所以.又,故.又,∴.【点睛】本题主要考查了含有边角恒等式的解三角形问题,属于中档题.解决这类型问题主要有两条途径:(1)化角为边,利用正弦定理或余弦定理的变形化角为边,走代数变形之路;(2)化边为角,主要利用正弦定理化边为角,走三角变形之路,常常需要运用到三角恒等变换的公式.21.已知数列{an}的前n项和为.(Ⅰ)当时,求数列{an}的通项公式an;(Ⅱ)当时,令,求数列{bn}的前n项和Tn.参考答案:(Ⅰ)(Ⅱ)【分析】(Ⅰ)利用的方法,进行求解即可(Ⅱ)仍然使用的方法,先求出,然后代入,并化简得,然后利用裂项求和,求出数列的前项和【详解】解:(Ⅰ)数列的前项和为①.当时,,当时,②,①﹣②得:,(首相不符合通项),所以:(Ⅱ)当时,①,当时,②,①﹣②得:,所以:令,所以:,则:【点睛】本题考查求数列通项的求法的应用,以及利用裂项求和法进行求和,属于基础题22.已知定义在R上的奇函数f(x)和偶函数g(x),满足f(x)+g(x)=2x.(Ⅰ)求f(x),g(x);(Ⅱ)求证g(x)在[0,+∞)上为增函数;(Ⅲ)求函数g(x)+g(2x)的最小值.参考答案:【考点】函数奇偶性的性质.【分析】(Ⅰ)根据函数奇偶性定义,解出奇函数f(x)和偶函数g(x)的表达式;(Ⅱ)利用导数的方法求证g(x)在[0,+∞)上为增函数;(Ⅲ)利用换元法求函数g(x)+g(2x)的最小值.【解答】解:(Ⅰ)∵f(x)为定义在R上的奇函数,g(x)为定义在R上的偶函数∴f(﹣x)=﹣f(x),g(﹣x)=g(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论