山东省郓城县市级名校2024年中考考前最后一卷数学试卷含解析_第1页
山东省郓城县市级名校2024年中考考前最后一卷数学试卷含解析_第2页
山东省郓城县市级名校2024年中考考前最后一卷数学试卷含解析_第3页
山东省郓城县市级名校2024年中考考前最后一卷数学试卷含解析_第4页
山东省郓城县市级名校2024年中考考前最后一卷数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省郓城县市级名校2024年中考考前最后一卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是()A.2k-2B.k-1C.kD.k+12.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是()A.-5 B.-2 C.3 D.53.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=()A.40° B.110° C.70° D.140°4.若反比例函数的图像经过点,则一次函数与在同一平面直角坐标系中的大致图像是()A. B. C. D.5.已知,两数在数轴上对应的点如图所示,下列结论正确的是()A. B. C. D.6.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为()A. B. C.1 D.7.若=1,则符合条件的m有()A.1个 B.2个 C.3个 D.4个8.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A. B. C. D.9.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是()A.a+b<0 B.a>|﹣2| C.b>π D.10.在3,0,-2,-2四个数中,最小的数是()A.3 B.0 C.-2 D.-2二、填空题(共7小题,每小题3分,满分21分)11.如果点P1(2,y1)、P2(3,y2)在抛物线上,那么y1______y2.(填“>”,“<”或“=”).12.计算的结果等于_____.13.若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是_________.(写出一个即可)14.如图,如果四边形ABCD中,AD=BC=6,点E、F、G分别是AB、BD、AC的中点,那么△EGF面积的最大值为_____.15.请写出一个开口向下,并且与y轴交于点(0,1)的抛物线的表达式_________16.已知⊙O半径为1,A、B在⊙O上,且,则AB所对的圆周角为__o.17.已知线段AB=2cm,点C在线段AB上,且AC2=BC·AB,则AC的长___________cm.三、解答题(共7小题,满分69分)18.(10分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.19.(5分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x(x≥20)件.(1)分别直接写出优惠方案一购买费用y1(元)、优惠方案二购买费用y(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.20.(8分)(1)解方程:x2﹣5x﹣6=0;(2)解不等式组:.21.(10分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)求证:△ACE≌△BCD;(2)若DE=13,BD=12,求线段AB的长.22.(10分)先化简,再求值:,其中与2,3构成的三边,且为整数.23.(12分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在中,是边上的中线,若,求证:.如图②,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边与的数量关系.24.(14分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF沿线段AB向右平移.(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】

先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.【详解】∵0<k<1,∴k-1<0,∴此函数是减函数,∵1≤x≤1,∴当x=1时,y最小=1(k-1)+1=1k-1.故选A.【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.2、B【解析】

当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.【详解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.即k≤-3或k≥1.所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.故选B.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.3、B【解析】

先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数,进而得到∠DEA的度数.【详解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故选B.【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补.4、D【解析】

甶待定系数法可求出函数的解析式为:,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.【详解】解:由于函数的图像经过点,则有∴图象过第二、四象限,

∵k=-1,

∴一次函数y=x-1,

∴图象经过第一、三、四象限,

故选:D.【点睛】本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;5、C【解析】

根据各点在数轴上位置即可得出结论.【详解】由图可知,b<a<0,A.

∵b<a<0,∴a+b<0,故本选项错误;B.

∵b<a<0,∴ab>0,故本选项错误;C.

∵b<a<0,∴a>b,故本选项正确;D.

∵b<a<0,∴b−a<0,故本选项错误.故选C.6、C【解析】

作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.【详解】试题分析:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故选C.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.7、C【解析】

根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.【详解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3个值故答案选C.【点睛】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.8、D【解析】

根据中心对称图形的概念求解.【详解】解:A.不是中心对称图形,本选项错误;B.不是中心对称图形,本选项错误;C.不是中心对称图形,本选项错误;D.是中心对称图形,本选项正确.故选D.【点睛】本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、D【解析】

根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案.【详解】a=﹣2,2<b<1.A.a+b<0,故A不符合题意;B.a<|﹣2|,故B不符合题意;C.b<1<π,故C不符合题意;D.<0,故D符合题意;故选D.【点睛】本题考查了实数与数轴,利用有理数的运算是解题关键.10、C【解析】

根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以-2<-2所以最小的数是-2,故选C.【点睛】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.二、填空题(共7小题,每小题3分,满分21分)11、>【解析】分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可.详解:抛物线y=﹣x2+2x的对称轴是x=﹣=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.故答案为>.点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.12、【解析】分析:直接利用二次根式的性质进行化简即可.详解:==.故答案为.点睛:本题主要考查了分母有理化,正确掌握二次根式的性质是解题的关键.13、-1【解析】试题分析:根据一次函数的图象经过第二、三、四象限,可以得出k<1,b<1,随便写出一个小于1的b值即可.∵一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,∴k<1,b<1.考点:一次函数图象与系数的关系14、4.1.【解析】

取CD的值中点M,连接GM,FM.首先证明四边形EFMG是菱形,推出当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,由此可得结论.【详解】解:取CD的值中点M,连接GM,FM.∵AG=CG,AE=EB,∴GE是△ABC的中位线∴EG=BC,同理可证:FM=BC,EF=GM=AD,∵AD=BC=6,∴EG=EF=FM=MG=3,∴四边形EFMG是菱形,∴当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,∴△EGF的面积的最大值为S四边形EFMG=4.1,故答案为4.1.【点睛】本题主要考查菱形的判定和性质,利用了三角形中位线定理,掌握菱形的判定:四条边都相等的四边形是菱形是解题的关键.15、(答案不唯一)【解析】

根据二次函数的性质,抛物线开口向下a<0,与y轴交点的纵坐标即为常数项,然后写出即可.【详解】∵抛物线开口向下,并且与y轴交于点(0,1)∴二次函数的一般表达式中,a<0,c=1,∴二次函数表达式可以为:(答案不唯一).【点睛】本题考查二次函数的性质,掌握开口方向、与y轴的交点与二次函数二次项系数、常数项的关系是解题的关键.16、45º或135º【解析】试题解析:如图所示,∵OC⊥AB,∴C为AB的中点,即在Rt△AOC中,OA=1,根据勾股定理得:即OC=AC,∴△AOC为等腰直角三角形,同理∵∠AOB与∠ADB都对,∵大角则弦AB所对的圆周角为或故答案为或17、【解析】

设AC=x,则BC=2-x,根据AC2=BC·AB列方程求解即可.【详解】解:设AC=x,则BC=2-x,根据AC2=BC·AB可得x2=2(2-x),解得:x=或(舍去).故答案为.【点睛】本题考查了黄金分割的应用,关键是明确黄金分割所涉及的线段的比.三、解答题(共7小题,满分69分)18、(1)y=2x+2(2)这位乘客乘车的里程是15km【解析】

(1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b(k≠0),运用待定系数法就可以求出结论;

(2)将y=32代入(1)的解析式就可以求出x的值.【详解】(1)由图象得:出租车的起步价是8元;设当x>3时,y与x的函数关系式为y=kx+b(k≠0),由函数图象,得,解得:故y与x的函数关系式为:y=2x+2;(2)∵32元>8元,∴当y=32时,32=2x+2,x=15答:这位乘客乘车的里程是15km.19、(1)y1=80x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.【解析】(1)根据方案即可列出函数关系式;(2)根据题意建立w与m之间的关系式,再根据一次函数的增减性即可得出答案.解:(1)y1=20×300+80(x-20)得:y2=(20×300+80x)×0.8得:(2)w=300m+[300(20-m)+80(40-m)]×0.8,w=-4m+7360,因为w是m的一次函数,k=-4<0,所以w随的增加而减小,m当m=20时,w取得最小值.即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品.20、(1)x1=6,x2=﹣1;(2)﹣1≤x<1.【解析】

(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出不等式的解集,再求出不等式组的解集即可.【详解】(1)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,x﹣6=0,x+1=0,x1=6,x2=﹣1;(2)∵解不等式①得:x≥﹣1,解不等式②得:x<1,∴不等式组的解集为﹣1≤x<1.【点睛】本题考查了解一元一次不等式组和解一元二次方程,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.21、(3)证明见解析;(3)AB=3.【解析】

(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根据SAS推出△ACE≌△BCD即可;(3)求出AD=5,根据全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【详解】证明:(3)如图,∵△ACB与△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,则∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD==5,∴AB=AD+BD=33+5=3.【点睛】本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.考点:3.全等三角形的判定与性质;3.等腰直角三角形.22、1【解析】试题分析:先进行分式的除法运算,再进行分式的加减法运算,根据三角形三边的关系确定出a的值,然后代入进行计算即可.试题解析:原式=,∵a与2、3构成△ABC的三边,∴3−2<a<3+2,即1<a<5,又∵a为整数,∴a=2或3或4,∵当x=2或3时,原分式无意义,应舍去,∴当a=4时,原式==123、(1)详见解析;(2)详见解析;(3)【解析】

(1)利用等腰三角形的性质和三角形内角和即可得出结论;

(2)先判断出OE=AC,即可得出OE=BD,即可得出结论;

(3)先判断出△ABE是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.【详解】(1)∵AD=BD,

∴∠B=∠BAD,

∵AD=CD,

∴∠C=∠CAD,

在△ABC中,∠B+∠C+∠BAC=180°,

∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°

∴∠B+∠C=90°,

∴∠BAC=90°,(2)如图②,连接与,交点为,连接四边形是矩形(3)如图3,过点做于点四边形是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论