版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章圆锥曲线的方程章末重点题型归纳知识点1椭圆的定义平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.注:在椭圆的定义中必须要注意以下两个问题(1)定义中到两定点的距离之和是常数,而不能是变量.(2)常数(2a)必须大于两定点间的距离,否则轨迹不是椭圆.①若,M的轨迹为线段;②若,M的轨迹无图形知识点2椭圆的方程及简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)eq\f(y2,a2)+eq\f(x2,b2)=1(a>b>0)范围-a≤x≤a且-b≤y≤b-b≤x≤b且-a≤y≤a顶点A1(-a,0),A2(a,0),_B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长长轴长=eq\a\vs4\al(2a),短轴长=eq\a\vs4\al(2b)焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=eq\a\vs4\al(2c)对称性对称轴x轴和y轴,对称中心(0,0)离心率e=eq\f(c,a)(0<e<1)(注:e=eq\r(1-\f(b2,a2))=eq\r(\f(1,1+\f(b2,c2))).)知识点3椭圆的焦点三角形椭圆上的一点与两焦点所构成的三角形称为焦点三角形.解决焦点三角形问题常利用椭圆的定义和正弦定理、余弦定理.以椭圆eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)上一点P(x0,y0)(y0≠0)和焦点F1(-c,0),F2(c,0)为顶点的△PF1F2中,若∠F1PF2=θ,则(1)椭圆的定义:|PF1|+|PF2|=2a.(2)余弦定理:4c2=|PF1|2+|PF2|2-2|PF1||PF2|·cosθ.(3)面积公式:S△PF1F2=eq\f(1,2)|PF1||PF2|·sinθ,当|y0|=b,即P为短轴端点时,S△PF1F2取最大值,为bc.重要结论:S△PF1F2=推导过程:由余弦定理得|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|·cosθ得由三角形的面积公式可得S△PF1F2==注:S△PF1F2===(是三角形内切圆的半径)(4)焦点三角形的周长为2(a+c).(5)在椭圆C:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)中,F1,F2是椭圆的两个焦点,P是椭圆上任意的一点,当点P在短轴端点时,最大.知识点4点与椭圆的位置关系点P(x0,y0)与椭圆eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)的位置关系:点P在椭圆上⇔eq\f(x\o\al(2,0),a2)+eq\f(y\o\al(2,0),b2)=1;点P在椭圆内部⇔eq\f(x\o\al(2,0),a2)+eq\f(y\o\al(2,0),b2)<1;点P在椭圆外部⇔eq\f(x\o\al(2,0),a2)+eq\f(y\o\al(2,0),b2)>1.知识点5直线与椭圆的位置关系直线y=kx+m与椭圆eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)的位置关系,判断方法:联立eq\b\lc\{\rc\(\a\vs4\al\co1(y=kx+m,,\f(x2,a2)+\f(y2,b2)=1,))消y得一元二次方程.当Δ>0时,方程有两解,直线与椭圆相交;当Δ=0时,方程有一解,直线与椭圆相切;当Δ<0时,方程无解,直线与椭圆相离.知识点6直线与椭圆相交的弦长公式1.定义:连接椭圆上两个点的线段称为椭圆的弦.2.求弦长的方法(1)交点法:将直线的方程与椭圆的方程联立,求出两交点的坐标,然后运用两点间的距离公式来求.(2)根与系数的关系法:如果直线的斜率为k,被椭圆截得弦AB两端点坐标分别为(x1,y1),(x2,y2),则弦长公式为:|AB|=eq\r(1+k2)·eq\r(x1+x22-4x1x2)=eq\r(1+\f(1,k2))·eq\r(y1+y22-4y1y2).注:(1)已知弦是椭圆()的一条弦,中点坐标为,则的斜率为,运用点差法求的斜率,设,;、都在椭圆上,两式相减得:,即,故(2)弦的斜率与弦中心和椭圆中心的连线的斜率之积为定值:知识点7双曲线的定义把平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.注:1、集合语言表达式双曲线就是下列点的集合:.常数要小于两个定点的距离.2、对双曲线定义中限制条件的理解(1)当||MF1|-|MF2||=2a>|F1F2|时,M的轨迹不存在.(2)当||MF1|-|MF2||=2a=|F1F2|时,M的轨迹是分别以F1,F2为端点的两条射线.(3)当||MF1|-|MF2||=0,即|MF1|=|MF2|时,M的轨迹是线段F1F2的垂直平分线.(4)若将定义中的绝对值去掉,其余条件不变,则动点的轨迹为双曲线的一支.具体是哪一支,取决于与的大小.①若,则,点的轨迹是靠近定点的那一支;②若,则,点的轨迹是靠近定点的那一支.知识点8双曲线的方程及简单几何性质标准方程eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)eq\f(y2,a2)-eq\f(x2,b2)=1(a>0,b>0)性质图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c范围x≤-a或x≥a,y∈eq\a\vs4\al(R)y≤-a或y≥a,x∈eq\a\vs4\al(R)对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴实轴:线段A1A2,长:eq\a\vs4\al(2a);虚轴:线段B1B2,长:eq\a\vs4\al(2b);半实轴长:eq\a\vs4\al(a),半虚轴长:eq\a\vs4\al(b)离心率e=eq\a\vs4\al(\f(c,a))∈(1,+∞)渐近线y=±eq\f(b,a)xy=±eq\f(a,b)x知识点9双曲线的焦点三角形双曲线上的一点与两焦点所构成的三角形称为焦点三角形.解决焦点三角形问题常利用双曲线的定义和正弦定理、余弦定理.以双曲线上一点P(x0,y0)(y0≠0)和焦点F1(-c,0),F2(c,0)为顶点的△PF1F2中,若∠F1PF2=θ,则(1)双曲线的定义:(2)余弦定理:=|PF1|2+|PF2|2-2|PF1||PF2|·cosθ.(3)面积公式:S△PF1F2=eq\f(1,2)|PF1||PF2|·sinθ,重要结论:S△PF1F2=推导过程:由余弦定理得|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|·cosθ得由三角形的面积公式可得S△PF1F2==知识点10直线与双曲线的位置关系1、把直线与双曲线的方程联立成方程组,通过消元后化为ax2+bx+c=0的形式,在a≠0的情况下考察方程的判别式.(1)Δ>0时,直线与双曲线有两个不同的公共点.(2)Δ=0时,直线与双曲线只有一个公共点.(3)Δ<0时,直线与双曲线没有公共点.当a=0时,此时直线与双曲线的渐近线平行,直线与双曲线有一个公共点.注:直线与双曲线的关系中:一解不一定相切,相交不一定两解,两解不一定同支.弦长公式直线被双曲线截得的弦长公式,设直线与椭圆交于,两点,则(为直线斜率)3、通径的定义:过焦点且垂直于实轴的直线与双曲线相交于、两点,则弦长.知识点11抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.注:①在抛物线定义中,若去掉条件“l不经过点F”,点的轨迹还是抛物线吗?不一定是,若点F在直线l上,点的轨迹是过点F且垂直于直线l的直线.②定义的实质可归纳为“一动三定”一个动点M;一个定点F(抛物线的焦点);一条定直线(抛物线的准线);一个定值(点M到点F的距离与它到定直线l的距离之比等于1).知识点12抛物线的方程及简单几何性质类型y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图象性质焦点Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(p,2),0))Feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(p,2),0))Feq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(p,2)))Feq\b\lc\(\rc\)(\a\vs4\al\co1(0,-\f(p,2)))准线x=-eq\f(p,2)x=eq\f(p,2)y=-eq\f(p,2)y=eq\f(p,2)范围x≥0,y∈Rx≤0,y∈Rx∈R,y≥0x∈R,y≤0对称轴x轴y轴顶点O(0,0)离心率e=1开口方向向右向左向上向下知识点13直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个交点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.注:(1)直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.(2)研究直线与抛物线的关系时要注意直线斜率不存在的情况.知识点14弦长问题过抛物线y2=2px(p>0)的焦点的直线交抛物线于A(x1,y1),B(x2,y2)两点,那么线段AB叫做焦点弦,如图:设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则|AB|=x1+x2+p.注:(1)x1·x2=eq\f(p2,4).(2)y1·y2=-p2.(3)|AB|=x1+x2+p=eq\f(2p,sin2α)(α是直线AB的倾斜角).(4)eq\f(1,|AF|)+eq\f(1,|BF|)=eq\f(2,p)为定值(F是抛物线的焦点).(5)求弦长问题的方法①一般弦长:|AB|=eq\r(1+k2)|x1-x2|,或|AB|=eq\r(1+\f(1,k2))|y1-y2|.②焦点弦长:设过焦点的弦的端点为A(x1,y1),B(x2,y2),则|AB|=x1+x2+p.题型一圆锥曲线的定义1.(2022·江苏镇江·高二期末)如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是(
)A.圆 B.双曲线 C.抛物线 D.椭圆2.(2022·宁夏·青铜峡市宁朔中学高二期末(理))已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9.动圆M在圆C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程是(
)A. B.C. D.3.(2022·陕西·宝鸡市渭滨区教研室高二期末(理))平面上动点到点的距离与它到直线的距离之比为,则动点的轨迹是(
)A.双曲线 B.抛物线 C.椭圆 D.圆题型二圆锥曲线的标准方程4.(2022·四川南充·高二期末(文))过椭圆:右焦点的直线:交于,两点,为的中点,且的斜率为,则椭圆的方程为(
)A. B.C. D.5.(2022·黑龙江·哈九中高二期末)阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的中心为原点,焦点、在轴上,椭圆的面积为,且离心率为,则的标准方程为(
)A. B. C. D.6.(2022·云南丽江·高二期末(理))已知双曲线满足,且与椭圆有公共焦点,则双曲线的方程为(
)A. B.C. D.7.(2022·安徽·合肥工业大学附属中学高二期末)已知点分别是等轴双曲线的左、右焦点,为坐标原点,点在双曲线上,,的面积为8,则双曲线的方程为(
)A. B. C. D.8.(2022·陕西咸阳·高二期末(理))已知双曲线的离心率,且双曲线C的两条渐近线与抛物线的准线围成的三角形的面积为3,则p的值为(
)A.1 B.2 C. D.4题型三圆锥曲线的几何性质9.(2022·上海市控江中学高二期末)椭圆的一个短轴端点到一个焦点的距离为______.10.(2022·陕西·榆林市第十中学高二期末(文))已知双曲线的渐近线方程为,则双曲线E的焦距等于______.11.(2022·安徽省皖西中学高二期末)已知抛物线上一点M(位于第一象限)到焦点F的距离等于,则直线的斜率为_______________.12.(2022·上海中学东校高二期末)过椭圆右焦点F的圆与圆外切,该圆直径的端点Q的轨迹记为曲线C,若P为曲线C上的一动点,则长度最小值为(
)A.0 B. C.1 D.213.(2022·浙江·高二期末)已知是双曲线:(,)的右焦点,过作与轴垂直的直线与双曲线交于,两点,过作一条渐近线的垂线,垂足为,若,则(
)A.1 B. C. D.3题型四圆锥曲线的离心率问题14.(2022·福建省福州华侨中学高二期末)已知椭圆的一个顶点为,右焦点为F,直线BF与椭圆的另一个交点为M,且,则该椭圆的离心率是__________.15.(2022·云南·罗平县第一中学高二期末)已知双曲线的一条渐近线与直线垂直,则的离心率为____________.16.(2022·四川泸州·高二期末(理))双曲线C:的左焦点为F,过原点作一条直线分别交C的左右两支于A,B两点,若,,则此双曲线的离心率为(
)A. B. C. D.317.(2022·福建师大附中高二期末)已知椭圆的左右焦点分别为,,过作倾斜角为的直线,与以坐标轴原点为圆心,椭圆半焦距为半径的圆交于点(不同于点),与椭圆在第一象限交于点,若,则椭圆的离心率为__________.18.(2022·天津市西青区杨柳青第一中学高二期末)已知,是椭圆和双曲线的公共焦点,是它们的一个公共点,且,则椭圆和双曲线离心率倒数之和的最大值为(
)A. B. C. D.19.(2022·北京市十一学校高二期末)已知椭圆C:()的左、右顶点分别为,,且以线段为直径的圆与直线相交,则椭圆C的离心率的取值范围为(
)A. B. C. D..题型五直线与圆锥曲线的位置关系20.(2022·河南洛阳·高二期末(文))已知双曲线,过点作直线l,若l与该双曲线只有一个公共点,这样的直线条数为(
)A.1 B.2 C.3 D.421.(2022·河南新乡·高二期末(理))已知抛物线的焦点为F,准线为,过的直线与抛物线交于A,B两点,与准线交于C点,若,且,则(
)A.4 B.12 C.4或16 D.4或1222.(2022·湖北黄冈·高二期末)已知椭圆的上下顶点分别为,一束光线从椭圆左焦点射出,经过反射后与椭圆交于点,则直线的斜率为(
)A. B. C. D.23.(2022·四川雅安·高二期末(理))已知F是椭圆的左焦点,设动点P在椭圆上,若直线FP的斜率大于,则直线OP(O为原点)的斜率的取值范围是(
)A. B.C. D.24.(2022·福建宁德·高二期末)已知F是双曲线的右焦点,若直线与双曲线相交于A,B两点,且,则k的范围是(
)A. B.C. D.题型六圆锥曲线中的弦长问题25.(2022·新疆·乌市八中高二期末(理))过抛物线焦点F的直线交抛物线于A,B两点,若,则的值为(
)A. B.2 C. D.26.(2022·广西钦州·高二期末(文))已知点,在双曲线上,线段的中点,则(
)A. B. C. D.27.(2022·重庆·巫山县官渡中学高二期末)椭圆C的方程为,右焦点为,离心率为.(1)求椭圆C的方程;(2)若直线与圆相切,与椭圆交于两点,且,求直线的方程.题型七圆锥曲线中的中点弦问题28.(2022·河南安阳·高二期末(理))已知抛物线,过点的直线与抛物线交于A,B两点,若点是线段AB的中点,则直线的斜率为(
)A.4 B.2 C.1 D.29.(2022·广西·宾阳中学高二期末(文))若椭圆的弦恰好被点平分,则所在的直线方程为(
)A. B.C. D.30.(2022·内蒙古包头·高二期末(文))已知点A,B在双曲线上,线段AB的中点为,则(
)A. B. C. D.31.(2022·浙江宁波·高二期末)已知直线,椭圆.若直线l与椭圆C交于A,B两点,则线段AB的中点的坐标为(
)A. B.C. D.题型八圆锥曲线中的面积问题32.(2022·山东泰安·高二期末)已知椭圆的焦点分别为,,椭圆上一点P与焦点的距离等于6,则的面积为(
)A.24 B.36 C.48 D.6033.(2022·四川凉山·高二期末(理))已知,是椭圆的两个焦点,点M在椭圆C上,当取最大值时,三角形面积为(
)A. B. C.2 D.434.(2022·宁夏·平罗中学高二期末(文))已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为(
)A. B.C. D.35.(2022·吉林·长春外国语学校高二期末)已知双曲线与双曲线的渐近线相同,且经过点.(1)求双曲线的方程;(2)已知双曲线的左右焦点分别为,,直线经过,斜率为,与双曲线交于,两点,求的面积.36.(2022·贵州铜仁·高二期末(文))已知抛物线的顶点为坐标原点,焦点在坐标轴上,设是抛物线上一点.(1)求抛物线方程;(2)若抛物线的焦点在x轴上,过点M做两条直线分别交抛物线于A,B两点,若直线与的倾斜角互补,求面积的最大值.题型九圆锥曲线中的最值问题37.(2022·江苏苏州·高二期末)椭圆上的点P到直线x+2y-9=0的最短距离为()A. B. C. D.38.(2022·陕西安康·高二期末(理))已知椭圆C:过点,且离心率.(1)求椭圆C的方程;(2)直线l的斜率为,直线l与椭圆C交于A,B两点.求面积的最大值.39.(2022·河南南阳·高二期末(理))已知抛物线的通径长为,若抛物线上有一动弦的中点为,且弦的长度为.(1)求抛物线的方程;(2)求点的纵坐标的最小值.40.(2022·云南·丽江市教育科学研究所高二期末)已知椭圆的离心率为,且过点.(1)求的方程;(2)若是上两点,直线与圆相切,求的取值范围.41.(2022·河南·沈丘县第一高级中学高二期末(文))已知点,,双曲线C上除顶点外任一点满足直线RM与QM的斜率之积为4.(1)求C的方程;(2)若直线l过C上的一点P,且与C的渐近线相交于A,B两点,点A,B分别位于第一、第二象限,,求的最小值.题型十圆锥曲线中的向量问题42.(2022·广西贵港·高二期末(文))已知椭圆的一个焦点与短轴的一个端点连线的倾斜角为,直线与椭圆相交于和两点,且为坐标原点.(1)求椭圆的方程;(2)直线与椭圆交于两点,直线的斜率为,直线的斜率为,且,求的取值范围.43.(2022·重庆九龙坡·高二期末)已知椭圆的离心率为,且点在椭圆上.(1)求椭圆的标准方程;(2)若过定点的直线交椭圆于不同的两点、(点在点、之间),且满足,求的取值范围.44.(2022·甘肃兰州·高二期末(理))若双曲线-=1(a>0,b>0)的焦点坐标分别为和,且该双曲线经过点P(3,1).(1)求双曲线的方程;(2)若F是双曲线的右焦点,Q是双曲线上的一点,过点F,Q的直线l与y轴交于点M,且,求直线l的斜率.题型十一圆锥曲线中的定点问题45.(2022·四川遂宁·高二期末(文))在平面直角坐标系xOy中,已知点,点P到点F的距离比点P到x轴的距离大2,记P的轨迹为C.(1)求C的方程;(2)A、B是C上的两点,直线OA、OB的斜率分别为且,求证直线过定点.46.(2022·广东汕尾·高二期末)已知点,分别为双曲线C:的左、右焦点,点A为双曲线C的右顶点,已知,且点到一条渐近线的距离为2.(1)求双曲线C的方程;(2)若直线:与双曲线C交于两点,,直线,的斜率分别记为,,且,求证:直线过定点,并求出定点坐标.47.(2022·江苏盐城·高二期末)平面直角坐标系中,已知椭圆的左焦点为F,点P为椭圆上的动点,OP的最小值为1,FP的最大值为.(1)求椭圆C的方程;(2)直线上是否存在点Q,使得过点Q能作椭圆C的两条互相垂直的切线?若存在,请求出这样的点Q;若不存在,请说明理由.题型十二圆锥曲线中的定值问题48.(2022·福建·莆田第二十五中学高二期末)已知抛物线的焦点为F,点在抛物线上.(1)求抛物线的标准方程;(2)过点的直线交抛物钱C于A,B两点,O为坐标原点,记直线OA,OB的斜率分别,,求证:为定值.49.(2022·广东湛江·高二期末)已知椭圆:的左、右焦点分别为,,离心率,为椭圆上一动点,面积的最大值为2.(1)求椭圆的方程;(2)若,分别是椭圆长轴的左、右端点,动点满足,连接交椭圆于点,为坐标原点.证明:为定值.50.(2022·江
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 23445-2025聚合物水泥防水涂料
- 2026年中山市民众锦标学校教师招聘备考题库及1套参考答案详解
- 2026年寻找热爱教育的您四川工商学院诚聘英才备考题库及答案详解一套
- 2025年度铁岭市定向招聘退役高校毕业生士兵备考题库及1套完整答案详解
- 2026年四川省地方水利电力建设有限公司招聘备考题库及答案详解一套
- 2026年北海市银海区西塘社区卫生服务中心招聘备考题库及参考答案详解1套
- 2026年复旦大学附属肿瘤医院王红霞教授课题组招聘研究助理备考题库及1套完整答案详解
- 2026年国家电投集团水电产业平台公司筹备组人员公开选聘26人备考题库及一套完整答案详解
- 2026年复旦大学药学院招聘新引进团队临床研究科研助理岗位2名备考题库及参考答案详解一套
- 2026年中国(黑龙江)自由贸易试验区哈尔滨片区管理局招聘备考题库带答案详解
- 中考英语阅读理解50篇附解析
- 2023年西藏中考数学真题试卷及答案
- WS-T 10010-2023 卫生监督快速检测通用要求(代替WS-T 458-2014)
- 输变电工程标准化施工作业卡变电工程
- MSA-测量系统分析模板
- 《国共合作与北伐战争》优课一等奖课件
- 中国旅游客源国概况-第二章-中国海外客源市场分
- 《分散系》说课课件
- 中小学综合实践活动课程指导纲要
- 加油站综合应急预案演练记录
- YY/T 1183-2010酶联免疫吸附法检测试剂(盒)
评论
0/150
提交评论