《仪器分析》课程辅导教案_第1页
《仪器分析》课程辅导教案_第2页
《仪器分析》课程辅导教案_第3页
《仪器分析》课程辅导教案_第4页
《仪器分析》课程辅导教案_第5页
已阅读5页,还剩87页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《仪器分析》课程辅导教案(光学分析和色谱分析)山东大学公共卫生学院卫生检验研究室邵丽华课程简介课程简介仪器分析是根据物质的物理和化学性质来获取物质化学组成、含量、结构及相关信息的科学;它是分析化学的重要组成部分。随着科学技术的发展,分析化学已由过去的经典分析方法为主转向以仪器分析方法为主。仪器分析在医学科学和生命科学中,对揭示生命起源、从分子水平上研究生命的过程;临床检验中的配合诊断和治疗疾病;预防医学领域内的环境监测;卫生检验领域的职业中毒检验、营养成分分析等都起着重要作用。仪器分析是卫生检验专业的重要的专业基础课。仪器分析课程的特点是基本理论与实践紧密结合,通过严格的实验训练,培养认真的科学态度及独立进行精密科学实验的技巧,提高分析问题和处理问题的能力,为后继课程的学习以及从事医药卫生和科学研究打下良好的基础。课时安排课时安排章学时数累计学时数HYPERLINKHYPERLINK4HYPERLINK4HYPERLINK4HYPERLINK6HYPERLINK10HYPERLINK13HYPERLINK16HYPERLINK18HYPERLINK21HYPERLINK23HYPERLINK23HYPERLINK30HYPERLINK31HYPERLINK32HYPERLINK34HYPERLINK37HYPERLINK38HYPERLINK41HYPERLINK43HYPERLINK44HYPERLINK46HYPERLINK46HYPERLINK48HYPERLINK50HYPERLINK62HYPERLINK62HYPERLINK63HYPERLINK65HYPERLINK67HYPERLINK71HYPERLINK75HYPERLINK76HYPERLINK77HYPERLINK79HYPERLINK79HYPERLINK80HYPERLINK84HYPERLINK85HYPERLINK86HYPERLINK87HYPERLINK88HYPERLINK自测题 HYPERLINK拖尾"或"伸舌"现象。从而使峰展宽。(2)活性中心的影响由于载体表面不完全惰性,即使涂布少量固定液后,在它表面存在的活性中心(如酸或碱作用中心)对极性强的组分仍会产生吸附,使这些组分释放的速度慢于其他分子而造成拖尾。解决办法是将载体预处理,除去或减少这些活性中心。(3)柱外效应在色谱柱以外的某些因素,使谱带展宽,降低柱的实际分离效率的现象称为柱外效应。造成柱外效应的因素有两类:柱前后死体积和与进样有关的技术。前者包括较大的气化器体积、连接管体积和检测器死体积等;后者严括进样速度慢,进样量大及气化温度不够高等。这些因素对组分在两相中的分配系数不起任何作用,反而使组分初始带宽增加,加剧分子扩散,造成谱带展宽。因此,必须将柱外效应抑制到最低程度。四.色谱分离条件1.分离效果指标(1)柱效能neft↑→分配平衡次数↑→越有利于分离(2)选择性neft大,有利于分离,但两个色谱峰不一定能分开,能否分离取决于组分在固定相中k的差异,以选择性表示:(19)r21↑→分离的可能性越大,无因次量,随固定相及柱温的变化而变化。2.总分离效能指标:分离度(又称为分辨率)——对两色谱峰分离程度的量度。为了综合考虑保留值的差值与峰宽两方面因素对柱效率的影响,以分离度作为色谱蜂的总分离效能指标:(20)分离度R定义为:相邻二组分的色谱峰保留值之差与峰宽总和的一半的比值。式中:分子为两组分保留值之差—由色谱体系热力学过程决定;分母为两峰宽度之和一半—取决于色谱体系动力学过程;当峰形不对称或相邻两峰间有重叠时,峰宽度Wb测量较困难,此时可用半峰宽代替峰宽:(21)(以上两式不完全相等,但差别很小)分离度R的值越大,说明相邻两组分分离效果越好。对一般分析要求R在1~1.5之间。3.基本分离方程(neft、r21、k、R之间的关系)对于两个相邻的色谱峰,假设峰底宽度相等,可推导出:(22)柱效因子相对分离因子保留程度因子(式中:n2为组分2的理论塔板数。)上式称为色谱分离的基本方程式。它清楚地表明了分离度R、理论塔板n、相对保留值r2l以及分配比(容量因子)k之间的关系。(1)柱效的影响分离度R与塔板数n的平方根成正比,增加n,可以增加R。但若通过增加L来增加n,会延长分析时间,所以降低塔板高度H是增大分离度的有效途径。实际工作中,为达到所需的分离度,根据下式可计算出给定分离度下应具有的塔板数:(23)(2)分配比的影响增大分配比k也可以增加分离度R,k是由组分色谱峰和空气峰的相对位置决定的,它与固定相含量和流动相性质及温度有关。(增加固定液用量虽可增大分离度,但会延长分析时间,引起色谱峰展宽)(3)相对保留值的影响r12(与固定相有关)增大,可使分离度增大。r12是由相邻两色谱峰的相对位置决定的,决定于固定相和流动相的性质。在气相色谱法中:通过改变固定相来改善r12值(流动相惰性);在液相色谱法中:通过改变流动相来改善r12值(固定相昂贵)。(当r12=1时,无论柱效有多高,R为零,两组分不可能分离)(24)自测题1.从一张色谱流出曲线上,你能获得那些信息?2.欲使两种组分完全分离,必须符合那些要求?这些要求与那些因素有关?3.今有五个组分A,B,C,D和E,在气液色谱上分配系数分别为480,360,490,496和473。试指出它们在色谱柱上的流出顺序。为什么?4.下列各项对柱的塔板高度有何影响?试解释之:(1)增大相比;(2)减小进样速度;(3)增加气化室的温度;(4)提高载气的流速;(5)减小填料的粒度;(6)降低色谱柱的柱温。5.用色谱基本理论来解释对载体和固定液应该具有的要求。6.用一根柱长为1m的色谱柱分离含有A,B两个组分的混合物,它们的保留时间分别为14.4min,15.4min,其峰底宽Wb分别为1.07min,1.16min。不被保留组分的保留时间为4.2min。试计算A,B两组分的:(1)分离度R,(2)选择性系数rBA;(3)达到分离度1.5时所需柱长。

气相色谱法6学时6学时基本要点:基本要点:1.了解气相色谱的优点及适用范围;2.理解固定相及重要操作条件的选择;3.理解常用检测器的原理及适用范围;4.理解常用定性分析及定量分析方法的优点。·概述气相色谱法(gaschromatography,GC):以气体为流动相的色谱分析法称为气相色谱法。一.气相色谱法的分类根据所用的固定相不同可分为:气—固色谱、气一液色谱。按色谱分离的原理可分为:吸附色谱和分配色谱。根据所用的色谱柱内径不同又可分为:填充柱色谱和毛细管柱色谱。二.气相色谱法的特点它具有分离效能高、灵敏度高、选择性好、分析速度快、用样量少等特点,还可制备高纯物质。在仪器允许的气化条件下,凡是能够气化且稳定、不具腐蚀性的液体或气体,都可用气相色谱法分析。有的化合物沸点过高难以气化或热不稳定而分解,则可通过化学衍生化的方法,使其转变成易气化或热稳定的物质后再进行分析。1.高效能、高选择性性质相似的多组分混合物:同系物、同分异构体等;分离制备高纯物质,纯度可达99.99%。2.灵敏度高可检出10-13-10-11g的物质;3.分析速度快几分钟到几十分钟;4.*应用范围广低沸点、易挥发的有机物和无机物(主要是气体)。局限性:不适于高沸点、难挥发、热稳定性差的高分子化合物和生物大分子化合物分析。三.气相色谱仪主要组成部件及分析流程一般气相色谱仪由五个部分组成:1.气路系统:气源、气体净化、气体流量控制和测量装置。2.进样系统:进样器、气化室和控温装置。3.分离系统:色谱柱、柱箱和控温装置。4.检测系统:检测器和控温装置。5.记录系统:记录仪或数据处理装置。载气(常用N2和H2、Ar)由高压钢瓶供给,经减压、净化、调节和控制流量后进入色谱柱。待基线稳定后,即可进样。样品经气化室气化后被载气带入色谱柱,在柱内被分离。分离后的组分依次从色谱柱中流出,进入检测器,检测器将各组分的浓度或质量的变化转变成电信号(电压或电流)。经放大器放大后,由记录仪或微处理机记录电信号-时间曲线,即浓度(或质量)时间曲线即色谱图。根据色谱图,可对样品中待测组分进行定性和定量分析。由此可知:色谱柱和检测器是气相色谱仪的两个关键部件。·气相色谱分离条件的选择一.载气及流速1.载气对柱效的影响:主要表现在组分在载气中的扩散系数Dm(g)上,它与载气分子量的平方根成反比,即同一组分在分子量较大的载气中有较小的Dm(g)。根据速率方程:(1)涡流扩散项与载气流速无关;(2)当载气流速u小时,分子扩散项对柱效的影响是主要的,因此选用分子量较大的载气,如N2、Ar,可使组分的扩散系数Dm(g)较小,从而减小分子扩散的影响,提高柱效;(3)当载气流速u较大时,传质阻力项对柱效的影响起主导作用,因此选用分子量较小的气体,如H2、He作载气可以减小气相传质阻力,提高柱效。2.流速(u)对柱效的影响:从速率方程可知,分子扩散项与流速成反比,传质阻力项与流速成正比,所以要使理论塔板高度H最小,柱效最高,必有一最佳流速。对于选定的色谱柱,在不同载气流速下测定塔板高度,作H-u图。由图可见,曲线上的最低点,塔板高度最小,柱效最高。该点所对应均流速即为最佳载气流速。在实际分析中,为了缩短分析时间,选用的载气流速稍高于最佳流速。图1H-u曲线二.固定液的配比又称为液担比。从速率方程式可知,固定液的配比主要影响Csu,降低df,可使Csu减小从而提高柱效。但固定液用量太少,易存在活性中心,致使峰形拖尾;且会引起柱容量下降,进样量减少。在填充柱色谱中,液担比一般为5%~25%。三.柱温的选择重要操作参数,主要影响来自于K、k、Dm(g)、Ds(l);从而直接影响分离效能和分析速度。柱温与R和t密切相关。提高t,可以改善Cu,有利于提高R,缩短t。但是提高柱温又会增加B/u导致R降低,r21变小。但降低t又会使分析时间增长。在实际分析中应兼顾这几方面因素,选择原则是在是在难分离物质对能得到良好的分离,分析时间适宜且峰形不托尾的前提下,尽可能采用较低的柱温。同时,选用的柱温不能高于色谱柱中固定液的最高使用温度(通常低20-50℃)。对于沸程宽的多组分混合物可采用“程序升温法”,可以使混合物中低沸点和高沸点的组分都能获得良好的分离。四.气化温度的选择气化温度的选择主要取决于待测试样的挥发性、沸点范围。稳定性等因素。气化温度一般选在组分的沸点或稍高于其沸点,以保证试样完全气化。对于热稳定性较差的试样,气化温度不能过高,以防试样分解。五.色谱柱长和内径的选择能使待测组分达到预期的分离效果,尽可能使用较短的色谱柱。一般常用的填充柱为l~3m。填充色谱柱内径为3~4mm。六.进样时间和进样量的选择1.进样迅速(塞子状)——防止色谱峰扩张;2.进样量要适当:在检测器灵敏度允许下,尽可能少的进样量:液体样0.1~10ul,气体试样为0.1~10ml·色谱柱一.气相色谱柱的分类色谱柱是由柱管和固定相组成,按照拄管的粗细和固定相的填充方式分为(1)填充柱;(2)毛细管柱。二.填充柱气相色谱固定相在影响色谱柱分离效果的诸多因素中选择适当的色谱固定相是关键。必须使待测各组分在选定的固定相上具有不同的吸附或分配,才能达到分离的目的。(一)气-液色谱(分配色谱)固定相气-液色谱的固定相是由高沸点物质固定液和惰性担体组成。1.担体(或载体)是一种化学惰性的多孔固体颗粒,支持固定液,表面积大,稳定性好(化学、热),颗径和孔径分布均匀;有一定的机械强度,不易破碎。(1)担体的种类和性能:硅藻土型:红色硅藻土担体—强度好,但表面存在活性中心,分离极性物质时色谱峰易拖尾;常用于分离非、弱极性物质。白色硅藻土担体—表面吸附性小,但强度差,常用于分离极性物质。非硅藻土型担体:有氟担体,适用于强极性和腐蚀性气体的分析;玻璃微球,适合于高沸点物质的分析;高分子多孔微球既可以用作气-固色谱的吸附剂,又可以用作气-液色谱的担体。

(2)担体的预处理:除去其表面的活性中心,使之钝化。酸洗法(除去碱性活性基团);碱洗法(除去酸性活性的基团);硅烷化(消除氢键结合力);釉化处理(使表面玻璃化、堵住微孔)等。2.固定液——涂在担体上作固定相的主成分(l)对固定液的要求:化学稳定性好:不与担体、载气和待测组分发生反应;热稳定性好:在操作温度下呈液体状态,蒸气压低,不易流失;选择性高:分配系数K差别大;溶解性好:固定液对待测组分应有一定的溶解度。(2)组分与固定液分子间的相互作用:组分与固定液分子间相互作用力通常包括:静电力、诱导力、色散力和氢键作用力。在气-液色谱中,只有当组分与固定液分子间的作用力大于组分分子间的作用力,组分才能在固定液中进行分配。选择适宜的固定液使待侧各组分与固定液之间的作用力有差异,才能达到彼此分离的目的。(3)固定液的分类:固定液有四百余种,常用相对极性分类。(a)规定强极性的,’-氧二丙腈的相对极性P=100;(b)规定非极性的角鲨烷(异三十烷)的相对极性P=0;(c)其它固定液与它们比较,测相对极性:选一物质对正丁烷—丁二烯分别测得它们在这两种固定液及被测柱上的相对保留值q:(1)则,被测固定液的相对极性Px为:(2)q1、q2、qx分别为物质对正丁烷—丁二烯在氧二丙腈、异三十烷、被测柱上的相对保留值。把P=0~100之间分为五级,20为一级,以“+”表示。+l、+2为弱极性;+3为中等极性;+4、+5为强极性。通常把非极性固定液的相对极性以“-”表之。如阿皮松L级别为“-”,是非极性固定液;邻苯二甲酸壬酯级别为“+2”,是弱极性固定液。(4)固定液的选择:一般是根据试样的性质(极性和官能团),按照“相似相溶”的原则选择适当的固定液。具体可从以下几方面考虑:l)分离非极性混合物一般选用非极性固定液组分和固定液分子间的作用力主要是色散力。试样中各组分按沸点由低到高的顺序出峰。常用的有:角鲨烷(异三十烷)、十六烷、硅油等;2)分离中等极性混合物一般选用中等极性固定液组分和固定液分子间的作用力主要是色散力和诱导力。试样中各组分按沸点由低到高的顺序出峰。3)分离极性组分选用极性固定液组分和固定液分子间的作用力主要是定向力。待测试样中各组分按极性由小到大的顺序出峰。例如:用极性固定液聚乙二醇一20M分析乙醛和丙烯醛时,极性较小的乙醛先出峰。4)分离非极性和极性(易极化)组分的混合物选用极性固定液:非极性组分先流出,极性(或易被极化)的组分后出峰。例如:采用中等极性的邻苯二甲酸二壬酯作固定液,沸点相差极小的苯(沸点80.l℃)和环乙烷(沸点为80.8℃)可以定量分离,环己烷先出峰,若采用非极性固定液则很难使二者分离。5)对于能形成氢键的组分选用强极性或氢键型的固定液如:多元醇、腈醚、酚和胺等的分离,不易形成氢键的先出峰。(二)气-固(吸附)色谱固定相——固体吸附剂1.活性炭:非极性吸附剂,分析低碳烃和气体及短链极性化合物。2.氧化铝:弱(中等)极性吸附剂,主要用于分析C1~C4烃类及其异构体。3.硅胶:强极性吸附剂,常用于分析硫化物:COS、H2S、SO2等。4.分子筛(人工合成的硅酸盐):强极性吸附剂,用于在室温条件下使H2,O2,N2,CH4,CO得到良好分离。5.高分子多孔微球:极性和非极性吸附剂,可分析极性的—多元醇、脂肪酸、腈类、胺类或非极性的—烃、醚、酮等;尤其适合分析有机物中的微量水。·气相色谱检测器待测组分经色谱柱分离后,通过检测器将各组分的浓度或质量转变成相应的电信号,经放大器放大后,由记录仪或微处理机得到色谱图,根据色谱图对待测组分进行定性和定量分析。气相色谱监测器根据其测定范围可分为:通用型检测器:对绝大多数物质够有响应;选择型检测器:只对某些物质有响应;对其它物质无响应或很小。根据检测器的输出信号与组分含量间的关系不同,可分为:浓度型检测器:测量载气中组分浓度的瞬间变化,检测器的响应值与组分在载气中的浓度成正比,与单位时间内组分进入检测器的质量无关。质量型检测器:测量载气中某组分进入检测器的质量流速变化,即检测器的响应值与单位时间内进人检测器某组分的质量成正比目前已有几十种检测器,其中最常用的是热导池检测器、电子捕获检测器(浓度型);火焰离子化检测器、火焰光度检测器(质量型)和氮磷检测器等。一.检测器的性能指标——灵敏度(高)、稳定性(好)、响应(快)、线性范围(宽)(一)灵敏度——应答值单位物质量通过检测器时产生的信号大小称为检测器对该物质的灵敏度。响应信号(R)—进样量(Q)作图,可得到通过原点的直线,该直线的斜率就是检测器的灵敏度,以S表示:(3)由此可知:灵敏度是响应信号对进入检测器的被测物质质量的变化率。气相色谱检测器的灵敏度的单位,随检测器的类型和试样的状态不同而异:对于浓度型检测器:当试样为液体时,S的单位为mV·ml/mg,即1mL载气中携带1mg的某组分通过检测器时产生的mV数;当试样为气体时,S的单位为mV·ml/ml,即1ml载气中携带1ml的某组分通过检测器时产生的mV数;对于质量型检测器:当试样为液体和气体时,S的单位均为:mV·s/g,即每秒钟有1g的组分被载气携带通过检测器所产生的mV数。灵敏度不能全面地表明一个检测器的优劣,因为它没有反映检测器的噪音水平。由于信号可以被放大器任意放大,S增大的同时噪声也相应增大,因此,仅用S不能正确评价检测器的性能。(二)检测限(敏感度)噪声——当只有载气通过检测器时,记录仪上的基线波动称为噪声,以RN表示。噪声大,表明检测器的稳定性差。检测限——是指检测器产生的信号恰是噪声的二倍(2RN)时,单位体积或单位时间内进入检测器的组分质量,以D表示。灵敏度、噪声、检测限三者之间的关系为:(4)检测限的单位:对于浓度型检测器为mg/ml或ml/ml;对质量型检测器为:g/s。检测限是检测器的重要性能指标,它表示检测器所能检出的最小组分量,主要受灵敏度和噪声影响。D越小,表明检测器越敏感,用于痕量分析的性能越好。在实际分析中,由于进入检测器的组分量很难确定(检测器总是处在与气化室、色谱柱、记录系统等构成的一个完整的色谱体系中)。所以常用最低检出量表示:图2检测器噪声(三)最低检出量——恰能产生2倍噪声信号时的色谱进样量,以Q0表示。(三)线性范围检测器的线性范围是指其响应信号与被测组分进样质量或浓度呈线性关系的范围。通常用最大允许进样量QM与最小检出量Q0的比值来表示。比值越大,检测器的线性范围越宽,表明试样中的大量组分或微量组分,检测器都能准确测定。二.(氢)火焰离子化检测器火焰离子化检测器是根据气体的导电率是与该气体中所含带电离子的浓度呈正比这一事实而设计的。一般情况下,组分蒸汽不导电,但在能源作用下,组分蒸汽可被电离生成带电离子而导电。火焰离子化检测器的结构:该检测器主要是由离子室、离子头和气体供应三部分组成。结构示意图见下图。图3火焰离子化检测器离子室是一金属圆筒,气体入口在离子室的底部,氢气和载气按一定的比例混合后,由喷嘴喷出,再与助燃气空气混合,点燃形成氢火焰。靠近火焰喷嘴处有一圆环状的发射极(通常是由铂丝作成),喷嘴的上方为一加有恒定电压(+300V)的圆筒形收集极(不锈钢制成),形成静电场,从而使火焰中生成的带电离子能被对应的电极所吸引而产生电流。2.火焰离子化检测器的工作原理由色谱柱流出的载气(样品)流经温度高达2100℃的氢火焰时,待测有机物组分在火焰中发生离子化作用,使两个电极之间出现一定量的正、负离子,在电场的作用下,正、负离子各被相应电极所收集。当载气中不含待测物时,火焰中离子很少,即基流很小,约10-14A。当待测有机物通过检测器时,火焰中电离的离子增多,电流增大(但很微弱10-8~10-12A)。需经高电阻(108~l011)后得到较大的电压信号,再由放大器放大,才能在记录仪上显示出足够大的色谱峰。该电流的大小,在一定范围内与单位时间内进入检测器的待测组分的质量成正比,所以火焰离子化检测器是质量型检测器。火焰离子化检测器对电离势低于H2的有机物产生响应,而对无机物、久性气体和水基本上无响应,所以火焰离子化检测器只能分析有机物(含碳化合物),不适于分析惰性气体、空气、水、CO、CO2、CS2、NO、SO2及H2S等。三.电子捕获检测器1.电子捕获检测器的结构:早期电子捕获检测器由两个平行电极制成。现多用放射性同轴电极。在检测器池体内,装有一个不锈钢棒作为正极,一个圆筒状-放射源(3H、63Ni)作负极,两极间施加流电或脉冲电压。图4电子捕获检测器2.电子捕获检测器的工作原理当纯载气(通常用高纯N2)进入检测室时,受射线照射,电离产生正离子(N2+)和电子e-,生成的正离子和电子在电场作用下分别向两极运动,形成约10-8A的电流——基流。加入样品后,若样品中含有某中电负性强的元素即易于电子结合的分子时,就会捕获这些低能电子,产生带负电荷阴离子(电子捕获)这些阴离子和载气电离生成的正离子结合生成中性化合物,被载气带出检测室外,从而使基流降低,产生负信号,形成倒峰。倒峰大小(高低)与组分浓度呈正比,因此,电子捕获检测器是浓度型的检测器。其最小检测浓度可达10-14g/ml,线性范围为103左右。电子捕获检测器是一种高选择性检测器。高选择性是指只对含有电负性强的元素的物质,如含有卤素、S、P、N等的化合物等有响应.物质电负性越强,检测灵敏度越高。四.火焰光度检测器火焰光度检测器是利用在一定外界条件下(即在富氢条件下燃烧)促使一些物质产生化学发光,通过波长选择、光信号接收,经放大把物质及其含量和特征的信号联系起来的一个装置。1.火焰光度检测器的结构燃烧室、单色器、光电倍增管、石英片(保护滤光片)及电源和放大器等。图5火焰光度检测器2.工作原理当含S、P化合物进入氢焰离子室时,在富氢焰中燃烧,有机含硫化合物首先氧化成SO2,被氢还原成S原子后生成激发态的S2*分子,当其回到基态时,发射出350~430nm的特征分子光谱,最大吸收波长为394nm。通过相应的滤光片,由光电倍增管接收,经放大后由记录仪记录其色谱峰。此检测器对含S化合物不成线性关系而呈对数关系(与含S化合物浓度的平方根成正比)。当含磷化合物氧化成磷的氧化物,被富氢焰中的H还原成HPO裂片,此裂片被激发后发射出480~600nm的特征分子光谱,最大吸收波长为526nm。因发射光的强度(响应信号)正比于HPO浓度。·气相色谱定性定量分析一.定性分析气相色谱的优点是能对多种组分的混合物进行分离分析,(这是光谱、质谱法所不能的)。但由于能用于色谱分析的物质很多,不同组分在同一固定相上色谱峰出现时间可能相同,进凭色谱峰对未知物定性有一定困难。对于一个未知样品,首先要了解它的来源、性质、分析目的;在此基础上,对样品可有初步估计;再结合已知纯物质或有关的色谱定性参考数据,用一定的方法进行定性鉴定。(一)利用保留值定性1.已知物对照法各种组分在给定的色谱柱上都有确定的保留值,可以作为定性指标。即通过比较已知纯物质和未知组分的保留值定性。如待测组分的保留值与在相同色谱条件下测得的已知纯物质的保留值相同,则可以初步认为它们是属同一种物质。由于两种组分在同一色谱柱上可能有相同的保留值,只用一根色谱往定性,结果不可靠。可采用另一根极性不同的色谱柱进行定性,比较未知组分和已知纯物质在两根色谱柱上的保留值,如果都具有相同的保留值,即可认为未知组分与已知纯物质为同一种物质。利用纯物质对照定性,首先要对试样的组分有初步了解,预先准备用于对照的已知纯物质(标准对照品)。该方法简便,是气相色谱定性中最常用的定性方法。2.相对保留值法对于一些组成比较简单的已知范围的混合物或无已知物时,可选定一基准物按文献报道的色谱条件进行实验,计算两组分的相对保留值:(5)式中:i-未知组分;s-基准物。并与文献值比较,若二者相同,则可认为是同一物质。(ris仅随固定液及柱温变化而变化。)可选用易于得到的纯品,而且与被分析组分的保留值相近的物质作基准物。2.保留指数法又称为Kovats指数,与其它保留数据相比,是一种重现性较好的定性参数。保留指数是将正构烷烃作为标准物,把一个组分的保留行为换算成相当于含有几个碳的正构烷烃的保留行为来描述,这个相对指数称为保留指数,定义式如下:(6)

IX为待测组分的保留指数,z与z+n为正构烷烃对的碳数。规定正己烷、正庚烷及正辛烷等的保留指数为600、700、800,其它类推。在有关文献给定的操作条件下,将选定的标准和待测组分混合后进行色谱实验(要求被测组分的保留值在两个相邻的正构烷烃的保留值之间)。由上式计算则待测组分X的保留指数IX,再与文献值对照,即可定性。3.联用技术气相色谱对多组分复杂混合物的分离效率很高,但定性却很困难。而质谱、红外光谱和核磁共振等是鉴别未知物的有力工具,但要求所分析的试样组分很纯。因此,将气相色谱与质谱、红外光谱、核磁共振谱联用,复杂的混合物先经气相色谱分离成单一组分后,再利用质谱仪、红外光谱仪或核磁共振谱仪进行定性。未知物经色谱分离后,质谱可以很快地给出未知组分的相对分子质量和电离碎片,提供是否含有某些元素或基团的信息。红外光谱也可很快得到未知组分所含各类基团的信息。对结构坚定提供可靠的论据。近年来,随着电子计算机技术的应用,大大促进了气相色谱法与其它方法联用技术的发展。二.定量分析在一定的色谱操作条件下,流入检测器的待测组分i的含量mi(质量或浓度)与检测器的响应信号(峰面积A或峰高h)成正比:mi=fiAi或mi=fihi式中,fi为定量校正因子。要准确进行定量分析,必须准确地测量响应信号,确求出定量校正因子fi。此两式是色谱定量分析的理论依据。1.峰面积的测量(1)峰高乘半峰宽法:对于对称色谱峰,可用下式计算峰面积:(7)

在相对计算时,系数1.06可约去。(2)峰高乘平均峰宽法:(8)对于不对称峰的测量,在峰高0.15和0.85处分别测出峰宽,由下式计算峰面积:此法测量时比较麻烦,但计算结果较准确。(3)自动积分法具有微处理机(工作站、数据站等),能自动测量色谱峰面积,对不同形状的色谱峰可以采用相应的计算程序自动计算,得出准确的结果,并由打印机打出保留时间和A或h等数据。2.定量校正因子由于同一检测器对不同物质的响应值不同,所以当相同质量的不同物质通过检测器时,产生的峰面积(或峰高)不一定相等。为使峰面积能够准确地反映待测组分的含量,就必须先用已知量的待测组分测定在所用色谱条件下的峰面积,以计算定量校正因子。(9)

式中:fi称为绝对校正因子,即是单位峰面积所相当的物质量。它与检测器性能、组分和流动相性质及操作条件有关,不易准确测量。在定量分析中常用相对校正因子,即某一组分与标准物质的绝对校正因子之比,即:(10)式中:Ai、As分别为组分和标准物质的峰面积;mi、ms分别为组分和标准物质的量。mi、ms可以用质量或摩尔质量为单位,其所得的相对校正因子分别称为相对质量校正因子和相对摩尔校正因子,用fm和fM表示。使用时常将“相对”二字省去。校正因子一般都由实验者自己测定。准确称取组分和标准物,配制成溶液,取一定体积注入色谱柱,经分离后,测得各组分的峰面积,再由上式计算fm或fM。4.定量方法(1)归一化法:如果试样中所有组分均能流出色谱柱,并在检测器上都有响应信号,都能出现色谱峰,可用此法计算各待测组分的含量。其计算公式如下:(11)

归一化法简便,准确,进样量多少不影响定量的准确性,操作条件的变动对结果的影响也较小,尤其适用多组分的同时测定。但若试样中有的组分不能出峰,则不能采用此法。(2)内标法:内标法是在试样中加入一定量的纯物质作为内标物来测定组分的含量。内标物应选用试样中不存在的纯物质,其色谱峰应位于待测组分色谱峰附近或几个待测组分色谱峰的中间,并与待测组分完全分离,内标物的加入量也应接近试样中待测组分的含量。具体作法是准确称取m(g)试样,加入ms(g)内标物,根据试样和内标物的质量比及相应的峰面积之比,由下式计算待测组分的含量:(12)(13)

由于内标法中以内标物为基准,则fs=1。内标法的优点是定量准确。因为该法是用待测组分和内标物的峰面积的相对值进行计算,所以不要求严格控制进样量和操作条件,试样中含有不出峰的组分时也能使用,但每次分析都要准确称取或量取试样和内标物的量,比较费时。为了减少称量和测定校正因子可采用内标标准曲线法——简化内标法:在一定实验条件下,待测组分的含量mi与Ai/As成正比例。先用待测组分的纯品配置一系列已知浓度的标准溶液,加入相同量的内标物;再将同样量的内标物加入到同体积的待测样品溶液中,分别进样,测出Ai/As,作Ai/As—m或Ai/As—C图,由Ai(样)/As即可从标准曲线上查得待测组分的含量。(3)外标法:取待测试样的纯物质配成一系列不同浓度的标准溶液,分别取一定体积,进样分析。从色谱图上测出峰面积(或峰高),以峰面积(或峰高)对含量作图即为标准曲线。然后在相同的色谱操作条件,分析待测试样,从色谱图上测出试样的峰面积(或峰高),由上述标准曲线查出待测组分的含量。外标法是最常用的定量方法。其优点是操作简便,不需要测定校正因子,计算简单。结果的准确性主要取决于进样的重视性和色谱操作条件的稳定性。·毛细管柱气相色谱法最早的毛细管柱亦称空心柱,是一种又细又长,形同毛细管的开放式管柱,固定液涂在毛细管内壁上。(柱长:5-100m,内经:0.1-0.7mm)一.毛细管柱的类1.涂壁空心柱(wall-coatedopentublarcolumn,WCOT柱)固定液直接涂在毛细管内壁上,最早的毛细管柱。2.多孔层柱(porous-layeropentublarcolumn,PLOT柱)吸附型多孔层柱:在管壁上涂一层多孔材料,如分子筛、氧化铝、熔融石英及高分子多孔微球等。分配型多孔层柱:将普通的载体沉于表面,在涂布合适的固定液二.毛细管柱气相色谱仪与普通色谱仪的不同处:气路系统:加一尾吹装置——减少柱后死体积,改善柱效;进样系统:进样量的准确性(分流、不分流、冷柱头等)。三.毛细管柱的优缺点1.总柱效高

毛细管柱内径一般为0.1~0.7mm,内壁固定液膜极薄,中心是空的,因阻力很小,而且涡流扩散项不存在,谱带展宽变小.由于毛细管柱的阻力很小,长可为填充柱的几十倍,其总柱效比填充柱高得多.

2.分析速度快

毛细管柱的相比约为填充柱的数十倍。由于液膜极薄,分配比k很小,相比大,组分在固定相中的传质速度极快,因此有利于提高柱效和分析速度。它可在1小时内分离出包含一百多种化合物的汽油成分;可在几分钟内分离十几个化合物。3.柱容量小毛细管柱的相比高,k必然很小,因此使最大允许进样量受到限制,对单个组分而言,约0.5ug就达到极限.为将极微量样品导人毛细管柱,一般需采用分流进样法。此法就是将均匀挥发的样品进行不等量的分流,只让极小部分样品(约几十分之一或几百分之一)进入柱内。进入柱内的样品量占注射样品量的比例称为“分流比”。·顶空气相色谱法“顶空气相色谱法”是一种测定液体或固体样品中挥发性组分的气相色谱。方法原理:样品于有一定顶端空间的密闭容器中,在一定温度和压力下,待测挥发组分在两相达动态平衡时,根据乌拉尔定律:(14)Pi—组分i在气相中的蒸气压;Pi0—纯组分i的饱和蒸气压;i—组分i的活度系数;当实验条件固定,且试液中组分浓度很低时,Pi0、i均为常数;Xi—组分i在该溶液中物质的量;k—为组分i对检测器特性的校正系数,在条件稳定时为常数当用组分i的浓度ci代替式中物质的量Xi时,在测定条件下:(15)·气相色谱法的应用只要在气相色谱仪允许的条件下可以气化而不分解的物质,都可以用气相色谱法测定。对部分热不稳定物质,或难以气化的物质,通过化学衍生化的方法,仍可用气相色谱法分析。在石油化工、医药卫生、环境监测、生物化学等领域都得到了广泛的应用1.在卫生检验中的应用空气、水中污染物如挥发性有机物、多环芳烃[苯、甲苯、苯并(a)比等];农作物中残留有机氯、有机磷农药等;食品添加剂苯甲酸等;体液和组织等生物材料的分析如氨基酸、脂肪酸、维生素等。2.在医学检验中的应用体液和组织等生物材料的分析:如脂肪酸、甘油三酯、维生素、糖类等。3.在药物分析中的应用抗癫痫药、中成药中挥发性成分、生物碱类药品的测定等。4.商品检验下图为一种香水的成分分析。色谱柱为化学键合交联毛细管柱,固定液位PEG-20M,柱长30m,内径0.25mm,键合相层厚度0.25m,采用程序升温方式:66自测题1.气相色谱定性分析的依据是什么?为什么要引入定量校正因子?什么是外标法、内标法和归一化法?简述它们的适用范围和各自的优缺点?2.在气相色谱分析中,为了测定下列物质,各应选择那种检测器为宜?农作物中含氯农药的残留量;(2)啤酒中微量硫化物的含量;(3)分离和分析苯和甲苯异构体。3.用内标法测定环氧丙烷中的水分含量,称取0.0115g甲醇。加到2.267g试样中,测得水分和甲醇的色谱峰高分别为148.8和172.3mm。水和甲醇(内标物)的相对质量校正因子分别为0.55和0.58,试计算水的质量分数。

高效液相色谱法4学时4学时基本要点:基本要点:1.了解高效液相色谱法的优点及适用范围;2.了解高效液相色谱仪的主要部件及高效液相色谱法基本流程;3.理解常用检测器的原理、适用的分析对象及适用范围;4.理解各种分离方式的原理及选择原则。·概述高效液相色谱法(highperformanc,liquidchromatography,HPLC)是在经典液相色谱法基础上发展起来的一种新型分离、分析技术。经典液相色谱法由于使用粗颗粒的固定相,填充不均匀,依靠重力使流动相流动,因此分析速度慢,分离效率低。新型高效的固定相、高压输液泵、梯度洗脱技术以及各种高灵敏度的检测器相继发明,高效液相色谱法迅速发展起来。高效液相色谱法与经典液相色谱法比较,具有下列主要特点:1.高效由于使用了细颗粒、高效率的固定相和均匀填充技术,高效液相色谱法分离效率极高,柱效一般可达每米104理论塔板。近几年来出现的微型填充柱(内径lmm)和毛细管液相色谱柱(内径0.05umm),理论塔板数超过每米105,能实现高效的分离。2.高速由于使用高压泵输送流动相,采用梯度洗脱装置,用检测器在柱后直接检测洗脱组分等,HPLC完成一次分离分析一般只需几分钟到几十分钟,比经典液相色谱快得多。3.高灵敏度紫外、荧光、电化学、质谱等高灵敏度检测器的使用,使HPLC的最小检测量可达10-9~10-11g4.高度自动化计算机的应用,使HPLC不仅能自动处理数据、绘图和打印分析结果,而且还可以自动控制色谱条件,使色谱系统自始至终都在最佳状态下工作,成为全自动化的仪器。5.应用范围广(与气相色谱法相比)HPLC可用于高沸点、相对分子质量大、热稳定性差的有机化合物及各种离子的分离分析。如氨基酸、蛋白质、生物碱、核酸、甾体、维生素、抗生素等。6.流动相可选择范围广它可用多种溶剂作流动相,通过改变流动相组成来改善分离效果,因此对于性质和结构类似的物质分离的可能性比气相色谱法更大。7.馏分容易收集更有利于制备。·高效液相色谱仪高效液相色谱仪主要有分析型、制备型和专用型三类。一般由五个部分组成:高压输液系统——进样系统——分离系统——检测系统——数据处理系统一.高压输液系统贮液装置、高压输液泵、过滤器、脱气装置等1.贮液器:贮液器用于存放溶剂。溶剂必须很纯,贮液器材料要耐腐蚀,对溶剂呈惰性。贮液器应配有溶剂过滤器,以防止流动相中的颗粒进入泵内。溶剂过滤器一般用耐腐蚀的镍合金制成,空隙大小一般为2m。2.脱气装置:脱气的目的是为了防止流动相从高压柱内流出时,释放出气泡进入检测器而使噪声剧增,甚至不能正常检测。3.高压输液泵高压输液泵是高效液相色谱仪的重要部件,是驱动溶剂和样品通过色谱柱和检测系统的高压源,其性能好坏直接影响分析结果的可靠性。对高压泵的基本要求是:①流量稳定;②输出压力高,最高输出压力为50Mpa;③流量范围宽,可在0.01~10ml/min范围任选。④耐酸、碱、缓冲液腐蚀。⑤压力波动小。2.梯度洗脱装置梯度洗脱是利用两种或两种以上的溶剂,按照一定时间程序连续或阶段地改变配比浓度,以达到改变流动相极性、离子强度或pH值,从而提高洗脱能力,改善分离的一种有效方法。当一个样品混合物的容量因子是范围很宽,用等度洗脱时间太长,且后出的峰形扁平不便检测时,用梯度洗脱可以改善峰形、并缩短分离时间。HPLC的梯度洗脱与GC的程序升温相似,可以缩短分析时间,提高分离效果。使所有的峰都处于最佳分离状态,而且峰形尖而窄。二.进样器进样器一般要求密封性好,死体积小,重复性好,保证中心进样,进样时对色谱系统的压力和流量波动小,并便于实现自动化。高压进样阀是目前广泛采用的一种方式。阀的种类很多,有六通阀、四通阀,双路阀等。以六通进样阀最为常用。三.分离系统色谱分离系统包括色谱柱、固定相和流动相。色谱柱是其核心部分,柱应具备耐高压、耐腐蚀、抗氧化、密封不漏液和柱内死体积小、柱效高、柱容量大、分析速度快、柱寿命长的要求。通常采用优质不锈钢管制成。色谱柱按内径不同可分为常规柱、快速柱和微量柱三类。常规分析柱柱长一般为10~25cm,内径4~5mm,固定相颗粒直径为5~10m。为了保护分析柱不受污染,一般在分析柱前加一短柱,约数厘米长,称为保护柱。(微量分析柱内径小于lmm,凝胶色谱往内径3~12mm,制备往内径较大,可达25mm以上。)四.检测系统检测器的作用是将柱流出物中样品组成和含量的变化转化为可供检测的信号,常用检测器有紫外吸收、荧光、示差折光、化学发光等。1.紫外可见吸收检测器(ultraviolet-visibledetector,UVD)紫外可见吸收检测器(UVD)是HPLC中应用最广泛的检测器之一,几乎所有的液相色谱仪都配有这种检测器。其特点是灵敏度较高,线性范围宽,噪声低,适用于梯度洗脱,对强吸收物质检测限可达1ng,检测后不破坏样品,可用于制备,并能与任何检测器串联使用。紫外可见检测器的工作原理与结构同一般分光光度计相似,实际上就是装有流动地的紫外可见光度计。(1)紫外吸收检测器:紫外吸收检测器常用氘灯作光源,氘灯则发射出紫外-可见区范围的连续波长,并安装一个光栅型单色器,其波长选择范围宽(190nm~800nm)。它有两个流通池,一个作参比,一个作测量用,光源发出的紫外光照射到流通池上,若两流通池都通过纯的均匀溶剂,则它们在紫外波长下几乎无吸收,光电管上接受到的辐射强度相等,无信号输出。当组分进入测量池时,吸收一定的紫外光,使两光电管接受到的辐射强度不等,这时有信号输出,输出信号大小与组分浓度有关。局限:流动相的选择受到一定限制,即具有一定紫外吸收的溶剂不能做流动相,每种溶剂都有截止波长,当小于该截止波长的紫外光通过溶剂时,溶剂的透光率降至10%以下,因此,紫外吸收检测器的工作波长不能小于溶剂的截止波长(2)光电二极管阵列检测器(photodiodearraydetector,PDAD):也称快速扫描紫外可见分光检测器,是一种新型的光吸收式检测器。它采用光电二极管阵列作为检测元件,构成多通道并行工作,同时检测由光栅分光,再入射到阵列式接收器上的全部波长的光信号,然后对二极管阵列快速扫描采集数据,得到吸收值(A)是保留时间(tR)和波长()函数的三维色谱光谱图。由此可及时观察与每一组分的色谱图相应的光谱数据,从而迅速决定具有最佳选择性和灵敏度的波长。下图是单光束二极管阵列检测器的光路图。光源发出的光先通过检测池,透射光由全息光栅色散成多色光,射到阵列元件上,使所有波长的光在接收器上同时被检测。阵列式接收器上的光信号用电子学的方法快速扫描提取出来,每幅图象仅需要10ms,远远超过色谱流出峰的速度,因此可随峰扫描。图1二极管阵列检测器光路图2.荧光检测器(fluorescencedetector,FD)荧光检测器是一种高灵敏度、有选择性的检测器,可检测能产生荧光的化合物。某些不发荧光的物质可通过化学衍生化生成荧光衍生物,再进行荧光检测。其最小检测浓度可达0.1ng/ml,适用于痕量分析;一般情况下荧光检测器的灵敏度比紫外检测器约高2个数量级,但其线性范围不如紫外检测器宽。近年来,采用激光作为荧光检测器的光源而产生的激光诱导荧光检测器极大地增强了荧光检测的信噪比,因而具有很高的灵敏度,在痕量和超痕量分析中得到广泛应用。3.示差折光检测器(differentialrefractiveIndexdetector,RID)示差折光检测器是一种浓度型通用检测器,对所有溶质都有响应,某些不能用选择性检测器检测的组分,如高分子化合物、糖类、脂肪烷烃等,可用示差检测器检测。示差检测器是基于连续测定样品流路和参比流路之间折射率的变化来测定样品含量的。光从一种介质进入另一种介质时,由于两种物质的折射率不同就会产生折射。只要样品组分与流动相的折光指数不同,就可被检测,二者相差愈大,灵敏度愈高,在一定浓度范围内检测器的输出与溶质浓度成正比。4.电化学检测器(elec)chemicaldetector,ED)电化学检测器主要有安培、极谱、库仑、电位、电导等检测器,属选择性检测器,可检测具有电活性的化合物。目前它已在各种无机和有机阴阳离子、生物组织和体液的代谢物、食品添加剂、环境污染物、生化制品、农药及医药等的测定中获得了广泛的应用。其中,电导检测器在离子色谱中应用最多。电化学检测器的优点是:①灵敏度高,最小检测量~般为ng级,有目可达pg级;②选择性好,可测定大量非电活性物质中极痕量的电活性物质;③线性范围宽,一般为4~5个数量级;④设备简单,成本较低;⑤易于自动操作。5.化学发光检测器(c。iluminescencedetector,CD)化学发光检测器是近年来发展起来的一种快速、灵敏的新型检测器,因其设备简单、价廉、线性范围宽等优点。其原理是基于某些物质在常温下进行化学反应,生成处于激发态势反应中间体或反应产物,当它们从激发态返回基态时,就发射出光子。由于物质激发态的能量是来自化学反应,故叫作化学发光。当分离组分从色谱柱中洗脱出来后,立即与适当的化学发光试剂混合,引起化学反应,导致发光物质产生辐射,其光强度与该物质的浓度成正比。这种检测器不需要光源,也不需要复杂的光学系统,只要有恒流泵,将化学发光试剂以一定的流速泵入混合器中,使之与柱流出物迅速而又均匀地混合产生化学发光,通过光电倍增管将光信号变成电信号,就可进行检测。这种检测器的最小检出量可达10-12g。五.数据处理系统早期的HPLC只配有记录仪记录色谱峰,用人工计算A或H。随着计算机技术的发展,简单的积分仪,可自动打印出H、A和tR,作一些简单的计算,但不能存储数据。现在的色谱工作站功能增多,一般包括:色谱参数的选择和设定:自动化操作仪器;色谱数据的采集和存储,并作“实时”处理;对采集和存储的数据进行后处理;自动打印,给出一套完整的色谱分析数据和图谱。同时也可把一些常用色谱参数、操作程序,及各种定量计算方法存入存储器中,需用时调出直接使用。·色谱分离条件选择一.减小柱内展宽,提高柱效l.固定相:①粒度小,均匀,以减小涡流扩散和流动相传质阻力;②改进结构,尽可能采用大孔径和浅孔道的表面多孔型载体或全多孔微粒型载体,减少滞留流动相传质阻力。2.流动相:选用低粘度的流动相,有利于增大组分在溶剂中的扩散系数Dm,减少传质阻力。3.流速:从H-U曲线可知,HPLC的最佳流速在流速很小处,减少流速有利于提高柱效,但在实践中为加快分析速度,常采用比最佳流速高数倍的流速。图2气相色谱(GC)和液相色谱(LC)的H-u曲线比较4.柱温:适当提高柱温,可降低流动相粘度,减少传质阻力,但柱温升高将使分辨率降低,柱寿命短,易产生气泡,一般在室温下进行。二.柱外展宽柱外谱带展宽又称“柱外效应”,系指从进样点到检测池之间除柱子本身以外的所有死体积所引起的色谱峰展宽,柱效下降。可分为:1.柱前展宽主要由进样引起,减小进样器的死体积,用阀门进样可减少柱前谱带展宽,提高柱效。2.柱后展宽主要由接管、检测器流通池体积及检测器响应时间等因素所引起。因此,尽可能用短而内径细的接管,减少流通池体积,改进检测器和记录系统的响应速度等都是克服柱后展宽的途径。·液-固色谱法一.原理液-固色谱法”是利用各组分在固定相上吸附能力的不同而将它们分离的方法。当组分随着流动相通过色谱柱中的吸附剂时,组分分子及流动相分子对吸附剂表面的活性中心发生吸附竞争。组分分子对活性中心的竞争能力的大小决定了它们保留值的大小。被活性中心吸附越强的组分分子越不容易被流动相洗脱,k值就大;反之k值就小。组分之间的k值相差越大,分离越容易。吸附剂吸附能力的强弱与吸附剂的比表面积、物理化学性质、组分分子的结构和组成以及流动相的性质等因素有关。二.固定相液-固吸附色谱所使用的固定相,多数是有吸附活性的吸附剂,常用的有表面多孔型和全多孔微粒型硅胶、氧化铝、分子筛等。1.表面多孔型:又称薄壳型,是高效液相色谱使用的第一种填料。表面多孔填料的机械强度好,易填充均匀、紧密,渗透性好,表面孔隙浅,传质快,柱效高,分离速度快。其主要缺点是由于比表面积小,柱容量低,允许进样量小。2.全多孔微粒型:目前广泛使用的有球形和无定形两种,颗粒直径3~10um,它具有粒度小,比表面积大(100~600m2/g),孔穴浅,柱效高和柱容量大的优点。三.流动相实现最佳分离与流动相的选择有关。溶剂的极性是重要的依据。溶剂的极性强弱可用溶剂强度参数0来衡量。0越大,表示洗脱剂的极性越强。吸附色谱流动相的选择原则是极性大的试样需用极性强的洗脱剂,极性弱的试样宜用极性较弱的洗脱剂。实际工作中常用两种或两种以上溶剂按不同比例混合作洗脱剂,以提供合适的溶剂强度和k值,提高分离的选择性。在分离复杂试样时,可进行梯度洗脱,能提高分离效率,改善峰形,加快分析速度。(高效液相色谱法中,流动相选择虽然有一般的指导原则,但主要靠实践经验。)·化学键合相色谱法一.原理“化学键合相色谱法”——采用化学键合相作固定相的液相色谱法。化学键合相是利用化学反应通过共价键将有机分子键合在载体(硅胶)表面,形成均一、牢固的单分子薄层而构成的固定相。其分离机理为吸附和分配两种机理兼有。对多数键合相来说,以分配机理为主。通常,化学键合相的载体是硅胶,硅胶表面有硅醇基,≡Si–OH,它能与合适的有机化合物反应,获得各种不同性能的化学键合相。从键合反应的性质可分为:酯化键合(≡Si-O-C)、硅氮键合(≡Si-N)和硅烷化键合(≡Si-O-Si-C)等;硅烷化键合相应用最广泛。这种键合相是用有机氯硅烷与硅醇基发生反应:≡Si–OH+C18H37SiCl3→≡Si-O–Si–C18H37+HCl∣这种固定相在pH=2~8.5范围内对水稳定,有机分子与载体间的结合牢固,固定相不易流失稳定性好。十八烷基硅烷键合相(Octadecylsilane简称ODS或C18):是最常用的非极性键合相。它们用于反相色谱法,在70℃以下和pH2~8范围内可正常工作。化学键合固定相具有如下优点:①柱效高:传质速度比一般液体固定相快;②稳定性:耐溶剂冲洗,耐高温,无固定液流失,从而提高了色谱柱的稳定性和使用寿命;应用范围广:改变键合有机分子的结构和基团的类型,能灵活地改变分离的选择性,适用于分离几乎所有类型的化合物;且能用各种溶剂作流动相(梯度洗脱)。二.流动相化学键合相色谱所用流动相的极性必须与固定相显著不同,根据流动相和固定相的相对极性不同分为:1.正相键合相色谱法:流动相极性小于固定相极性。常用非极性溶剂如烷烃类溶剂,样品组分的保留值可用加入适当的有机溶剂(调节剂)的办法调节洗脱强度。常用有机溶剂为极性溶剂如氯仿、二氯甲烷、已腈、醇类等。适用于分离中等极性化合物,如脂溶性维生素、甾族、芳香醇、芳香胺、脂、有机氯农药等。2.反相键合相色谱法:流动相极性大于固定相极性。流动相多以水或无机盐缓冲液为主体,再加入一种能与水相混溶的有机溶剂(如甲醇、乙睛、四氢呋喃等)为调节,根据分离需要,改变洗脱剂的组成及含量,以调节极性和洗脱能力。在反相键合相色谱中,极性大的组分先流出,极性小的组分后流出。固定相一般为C18、C8。反相键合相色谱法应用最广泛,因为它以水为底溶剂,在水中可以加入各种添加剂,改变流动相的离子强度、pH值和极性等,以提高选择性,而且水的紫外截至波长低,有利痕量组分的检测,反向键合相稳定性好,不易被强极性组分污染,且水廉价易得,安全。·离子交换色谱法一.原理离子交换色谱的固定相是交换剂,根据交换剂性质可分为:阳离子交换剂和阴离子交换剂。交换剂由固定的离子基团和可交换的平衡离子组成。当流动相带着组分离子通过离子交换柱时,组分离子与交换剂上可交换的平衡离子进行

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论