2023-2024学年江苏省丹阳中学数学高一下期末统考试题含解析_第1页
2023-2024学年江苏省丹阳中学数学高一下期末统考试题含解析_第2页
2023-2024学年江苏省丹阳中学数学高一下期末统考试题含解析_第3页
2023-2024学年江苏省丹阳中学数学高一下期末统考试题含解析_第4页
2023-2024学年江苏省丹阳中学数学高一下期末统考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江苏省丹阳中学数学高一下期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.平面向量与共线且方向相同,则的值为()A. B. C. D.2.若函数和在区间D上都是增函数,则区间D可以是()A. B. C. D.3.设集合,集合,则()A. B. C. D.4.一个四面体的三视图如图所示,则该四面体的表面积是()A. B.C. D.5.为了调查某工厂生产的一种产品的尺寸是否合格,现从500件产品中抽出10件进行检验,先将500件产品编号为000,001,002,…,499,在随机数表中任选一个数开始,例如选出第6行第8列的数4开始向右读取(为了便于说明,下面摘取了随机数表附表1的第6行至第8行),即第一个号码为439,则选出的第4个号码是()A.548 B.443 C.379 D.2176.在中,角的对边分别是,若,则角的大小为()A.或 B.或 C. D.7.在中,角所对的边分别为,若.且,则的值为()A. B.C. D.或8.在中,已知,.若最长边为,则最短边长为()A. B. C. D.9.平面与平面平行的充分条件可以是()A.内有无穷多条直线都与平行B.直线,,且直线a不在内,也不在内C.直线,直线,且,D.内的任何一条直线都与平行10.已知是函数的两个零点,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的反函数为____________.12.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.13.当函数取得最大值时,=__________.14.已知函数那么的值为.15.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件,为了了解它们的产品质量是否存在显著差异,用分层抽样的方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=.16.在平面直角坐标系中,角的顶点在原点,始边与轴的正半轴重合,终边过点,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)若三点共线,求的关系;(2)若,求点的坐标.18.某种笔记本的单价是5元,买个笔记本需要y元,试用函数的三种表示法表示函数.19.(已知函数.(I)求函数的最小正周期及在区间上的最大值和最小值;(II)若,求的值.20.在中,内角所对的边分别是.已知,,且.(Ⅰ)求角的大小;(Ⅱ)若,求面积的最大值.21.(1)设1<x<,求函数y=x(3﹣2x)的最大值;(2)解关于x的不等式x2-(a+1)x+a<1.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用向量共线的坐标运算求解,验证得答案.【详解】向量与共线,,解得.当时,,,与共线且方向相同.当时,,,与共线且方向相反,舍去.故选.【点睛】本题考查向量共线的坐标运算,是基础的计算题.2、D【解析】

依次判断每个选项,排除错误选项得到答案.【详解】时,单调递减,A错误时,单调递减,B错误时,单调递减,C错误时,函数和都是增函数,D正确故答案选D【点睛】本题考查了三角函数的单调性,意在考查学生对于三角函数性质的理解应用,也可以通过图像得到答案.3、B【解析】

已知集合A,B,取交集即可得到答案.【详解】集合,集合,则故选B【点睛】本题考查集合的交集运算,属于简单题.4、B【解析】

试题分析:由三视图可知,该几何体是如下图所示的三棱锥,其中平面平面,,且,,所以,与均为正三角形,且边长为,所以,故该三棱锥的表面各为,故选B.考点:1.三视图;2.多面体的表面积与体积.5、D【解析】

利用随机数表写出每一个数字即得解.【详解】第一个号码为439,第二个号码为495,第三个号码为443,第四个号码为217.故选:D【点睛】本题主要考查随机数表,意在考查学生对该知识的理解掌握水平.6、B【解析】

通过给定条件直接利用正弦定理分析,注意讨论多解的情况.【详解】由正弦定理可得:,,∵,∴为锐角或钝角,∴或.故选B.【点睛】本题考查解三角形中正弦定理的应用,难度较易.出现多解时常借助“大边对大角,小边对小角”来进行取舍.7、D【解析】

首先根据余弦定理,得到或.再分别计算即可.【详解】因为,所以,即:,解得:或.当时,.当时,.所以或.故选:D【点睛】本题主要考查余弦定理解三角形,熟记公式为解题的关键,属于中档题.8、A【解析】试题分析:由,,解得,同理,由,,解得,在三角形中,,由此可得,为最长边,为最短边,由正弦定理:,解得.考点:正弦定理.9、D【解析】

利用平面与平面平行的判定定理一一进行判断,可得正确答案.【详解】解:A选项,内有无穷多条直线都与平行,并不能保证平面内有两条相交直线与平面平行,这无穷多条直线可以是一组平行线,故A错误;B选项,直线,,且直线a不在内,也不在内,直线a可以是平行平面与平面的相交直线,故不能保证平面与平面平行,故B错误;C选项,直线,直线,且,,当直线,同样不能保证平面与平面平行,故C错误;D选项,内的任何一条直线都与平行,则内至少有两条相交直线与平面平行,故平面与平面平行;故选:D.【点睛】本题主要考查平面与平面平行的判断,解题时要认真审题,熟练掌握面与平面平行的判定定理,注意空间思维能力的培养.10、A【解析】

在同一直角坐标系中作出与的图象,设两函数图象的交点,依题意可得,利用对数的运算性质结合图象即可得答案.【详解】解:,在同一直角坐标系中作出与的图象,

设两函数图象的交点,

则,即,

又,

所以,,即,

所以①;

又,故,即②,由①②得:,

故选:A.【点睛】本题考查根的存在性及根的个数判断,依题意可得是关键,考查作图能力与运算求解能力,属于难题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由原函数的解析式解出自变量x的解析式,再把x和y交换位置,即可得到结果.【详解】解:记∴故反函数为:【点睛】本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.12、【解析】

先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.13、【解析】

利用辅助角将函数利用两角差的正弦公式进行化简,求得函数取得最大值时的与的关系,从而求得,,可得结果.【详解】因为函数,其中,,当时,函数取得最大值,此时,∴,,∴故答案为【点睛】本题考查了两角差的正弦公式的逆用,着重考查辅助角公式的应用与正弦函数的性质,属于中档题.14、【解析】试题分析:因为函数所以==.考点:本题主要考查分段函数的概念,计算三角函数值.点评:基础题,理解分段函数的概念,代入计算.15、13【解析】(解法1)由分层抽样得,解得n=13.(解法2)从甲乙丙三个车间依次抽取a,b,c个样本,则120∶80∶60=a∶b∶3a=6,b=4,所以n=a+b+c=13.16、-1【解析】

根据三角函数的定义求得,再代入的展开式进行求值.【详解】角终边过点,终边在第三象限,根据三角函数的定义知:,【点睛】考查三角函数的定义及三角恒等变换,在变换过程中要注意符号的正负.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)a+b=2;(2)(5,-3).【解析】

(1)求出和的坐标,然后根据两向量共线的等价条件可得所求关系式.(2)求出的坐标,根据得到关于的方程组,解方程组可得所求点的坐标.【详解】由题意知,,.(1)∵三点共线,∴∥,∴,∴.(2)∵,∴,∴,解得,∴点的坐标为.【点睛】本题考查向量共线的应用,解题的关键是把共线表示为向量的坐标的形式,进而转化为数的运算的问题,属于基础题.18、见解析.【解析】

根据定义域,分别利用解析法,列表法,图像法表示即可.【详解】解:这个函数的定义域是数集.用解析法可将函数表示为,.用列表法可将函数表示为笔记本数12345钱数510152025用图象法可将函数表示为:【点睛】本题考查函数的表示方法,注意函数的定义域,是基础题.19、函数在区间上的最大值为2,最小值为-1【解析】试题分析:(1)将函数利用倍角公式和辅助角公式化简为,再利用周期可得最小正周期,由找出对应范围,利用正弦函数图像可得值域;(2)先利用求出,再由角的关系展开后代入可得值.试题解析:(1)所以又所以由函数图像知.(2)解:由题意而所以所以所以=.考点:三角函数性质;同角间基本关系式;两角和的余弦公式20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)先利用向量垂直的坐标表示,得到,再利用正弦定理以及两角和的正弦公式将,化为,进而得到,由此能求出.(Ⅱ)将两边平方,推导出,当且仅当,时取等号,由此求出面积的最大值.【详解】解析:(Ⅰ)由得,则得,即由于,得,又A为内角,因此.(Ⅱ)将两边平方,即所以,当且仅当,时取等号.此时,其最大值为.【点睛】本题主要考查数量积的坐标表示及运算、两角和的正弦公式应用、三角形面积公式的应用以及利用基本不等式求最值.21、(1)(2)见解析【解析】

(1)由题意利用二次函数的性质,求得函数的最大值.(2)不等式即(x﹣1)(x﹣a)<1,分类讨论求得它的解集.【详解】(1)设1<x,∵函数y=x(3﹣2x)2,故当x时,函数取得最大值为.(2)关于x的不等式x2﹣(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论