2023-2024学年上海市南汇一中数学高一下期末统考试题含解析_第1页
2023-2024学年上海市南汇一中数学高一下期末统考试题含解析_第2页
2023-2024学年上海市南汇一中数学高一下期末统考试题含解析_第3页
2023-2024学年上海市南汇一中数学高一下期末统考试题含解析_第4页
2023-2024学年上海市南汇一中数学高一下期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年上海市南汇一中数学高一下期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,某船在A处看见灯塔P在南偏东方向,后来船沿南偏东的方向航行30km后,到达B处,看见灯塔P在船的西偏北方向,则这时船与灯塔的距离是:A.10kmB.20kmC.D.2.在△中,已知,,,则△的面积等于()A.6 B.12 C. D.3.如图,设,是平面内相交的两条数轴,,分别是与轴,轴正方向同向的单位向量,且,若向量,则把有序数对叫做向量在坐标系中的坐标.假设在坐标系中的坐标为,则()A. B. C. D.4.在等差数列中,,则等于()A.5 B.6 C.7 D.85.在△ABC中,角A、B、C所对的边分别为,己知A=60°,,则B=()A.45° B.135° C.45°或135° D.以上都不对6.已知△ABC的项点坐标为A(1,4),B(﹣2,0),C(3,0),则角B的内角平分线所在直线方程为()A.x﹣y+2=0 B.xy+2=0 C.xy+2=0 D.x﹣2y+2=07.已知两条直线,,两个平面,,下面说法正确的是()A. B. C. D.8.在中,已知,则的面积为()A. B. C. D.9.设为直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则10.已知函数是奇函数,将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为.若的最小正周期为,且,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.给出以下四个结论:①过点,在两轴上的截距相等的直线方程是;②若是等差数列的前n项和,则;③在中,若,则是等腰三角形;④已知,,且,则的最大值是2.其中正确的结论是________(写出所有正确结论的番号).12.某幼儿园对儿童记忆能力的量化评价值和识图能力的量化评价值进行统计分析,得到如下数据:468103568由表中数据,求得回归直线方程中的,则.13.中,内角、、所对的边分别是、、,已知,且,,则的面积为_____.14.在中,,,.若,,且,则的值为______________.15.已知一圆锥的侧面展开图为半圆,且面积为S,则圆锥的底面积是_______16.已知三棱锥的底面是腰长为2的等腰直角三角形,侧棱长都等于,则其外接球的体积为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知离心率为的椭圆过点.(1)求椭圆的方程;(2)过点作斜率为直线与椭圆相交于两点,求的长.18.已知,,求的值.19.在锐角中,角,,所对的边分别为,,.已知,.(1)求的值;(2)若,求的面积.20.设等比数列的前n项和为.已知,,求和.21.如图所示,在平面四边形中,为正三角形.(1)在中,角的对边分别为,若,求角的大小;(2)求面积的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

在中,利用正弦定理求出得长,即为这时船与灯塔的距离,即可得到答案.【详解】由题意,可得,即,在中,利用正弦定理得,即这时船与灯塔的距离是,故选C.【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.2、C【解析】

通过A角的面积公式,代入数据易得面积.【详解】故选C【点睛】此题考查三角形的面积公式,代入数据即可,属于简单题目.3、D【解析】

可得.【详解】向量,则.故选:.【点睛】本题主要考查了向量模的运算和向量的数量积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.4、C【解析】

由数列为等差数列,当时,有,代入求解即可.【详解】解:因为数列为等差数列,又,则,又,则,故选:C.【点睛】本题考查了等差数列的性质,属基础题.5、A【解析】

利用正弦定理求出的值,再结合,得出,从而可得出的值。【详解】由正弦定理得,,,则,所以,,故选:A。【点睛】本题考查利用正弦定理解三角形,要注意正弦定理所适用的基本情形,同时在求得角时,利用大边对大角定理或两角之和不超过得出合适的答案,考查计算能力,属于中等题。6、D【解析】

由已知可得|AB|=|BC|=5,所以角B的内角平分线所在直线方程为AC的垂直平分线,继而可以求得结果.【详解】由已知可得|AB|=|BC|=5,所以角B的内角平分线所在直线方程为AC的垂直平分线,又线段AC中点坐标为(2,2),则角B的内角平分线所在直线方程为y﹣2,即x﹣2y+2=1.故选:D.【点评】本题考查直线的位置关系,考查垂直的应用,由|AB|=|BC|=5转化为求直线的AC的垂直平分线是关键,属于中档题.7、D【解析】

满足每个选项的条件时能否找到反例推翻结论即可。【详解】A:当m,n中至少有一条垂直交线才满足。B:很明显m,n还可以异面直线不平行。C:只有当m垂直交线时,否则不成立。故选:D【点睛】此题考查直线和平面位置关系,一般通过反例排除法即可解决,属于较易题目。8、B【解析】

根据三角形的面积公式求解即可.【详解】的面积.

故选:B【点睛】本题主要考查了三角形的面积公式,属于基础题.9、B【解析】A中,也可能相交;B中,垂直与同一条直线的两个平面平行,故正确;C中,也可能相交;D中,也可能在平面内.【考点定位】点线面的位置关系10、C【解析】

只需根据函数性质逐步得出值即可。【详解】因为为奇函数,∴;又,,又∴,故选C。【点睛】本题考查函数的性质和函数的求值问题,解题关键是求出函数。二、填空题:本大题共6小题,每小题5分,共30分。11、②④【解析】

①中满足题意的直线还有,②中根据等差数列前项和的特点,得到,③中根据同角三角函数关系进行化简计算,从而进行判断,④中根据基本不等式进行判断.【详解】①中过点,在两轴上的截距相等的直线还可以过原点,即两轴上的截距都为,即直线,所以错误;②中是等差数列的前n项和,根据等差数列前项和的特点,,是一个不含常数项的二次式,从而得到,即,所以正确;③中在中,若,则可得,所以可得或,所以可得或,从而得到为直角三角形或等腰三角形,所以错误;④中因为,,且,由基本不等式,得到,所以,当且仅当,即时,等号成立.所以,即的最大值是,所以正确.故答案为:②④【点睛】本题考查截距相等的直线的特点,等差数列前项和的特点,判断三角形形状,基本不等式求积的最大值,属于中档题.12、-0.1【解析】

分别求出和的均值,代入线性回归方程即可.【详解】由表中数据易得,,由在直线方程上,可得【点睛】此题考查线性回归方程形式,表示在回归直线上代入即可,属于简单题目.13、【解析】

由正弦定理边角互化思想结合两角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面积公式可计算出的面积.【详解】,由边角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案为.【点睛】本题考查正弦定理边角互化思想的应用,考查利用余弦定理解三角形以及三角形面积公式的应用,解题时要结合三角形已知元素类型合理选择正弦、余弦定理解三角形,考查运算求解能力,属于中等题.14、【解析】,则.【考点】向量的数量积【名师点睛】根据平面向量的基本定理,利用表示平面向量的一组基地可以表示平面内的任一向量,利用向量的定比分点公式表示向量,计算数量积,选取基地很重要,本题的已知模和夹角,选作基地易于计算数量积.15、【解析】

由已知中圆锥的侧面展开图为半圆且面积为S,我们易确定圆锥的母线长l与底面半径R之间的关系,进而求出底面面积即可得到结论.【详解】如图:设圆锥的母线长为l,底面半径为R若圆锥的侧面展开图为半圆则2πR=πl,即l=2R,又∵圆锥的侧面展开图为半圆且面积为S,则圆锥的底面面积是.故答案为.【点睛】本题考查的知识点是圆锥的表面积,根据圆锥的侧面展开图为半圆,确定圆锥的母线长与底面的关系是解答本题的关键.16、【解析】

先判断球心在上,再利用勾股定理得到半径,最后计算体积.【详解】三棱锥的底面是腰长为2的等腰直角三角形,侧棱长都等于为中点,为外心,连接,平面球心在上设半径为故答案为【点睛】本题考查了三棱锥外接球的体积,意在考查学生的空间想象能力和计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)根据离心率可得的关系,将点代入椭圆方程,可得椭圆方程;(2)直线方程与椭圆方程联立,可得弦长.【详解】(1),又,,即椭圆方程是,代入点,可得,椭圆方程是.(2)设直线方程是,联立椭圆方程代入可得.【点睛】本题考查了椭圆方程和直线与椭圆的位置关系,涉及弦长公式,属于简单题.18、【解析】

∵,且,∴,则,∴===-.考点:本题考查了三角恒等变换19、(1)2;(2)3.【解析】

(1)利用正弦定理可得,消元后可得关于的三角方程,从该方程可得的值.(2)利用同角的三角函数的基本关系式结合(1)中的结果可得,再根据题设条件得到后再利用正弦定理可求的值,从而得到所求的面积.【详解】(1)在由正弦定理得,①,因为,所以,又因为,所以,整理得到,故.(2)在锐角中,因为,所以,将代入①得.在由正弦定理得,所以.【点睛】在解三角形中,如果题设条件是边角的混合关系,那么我们可以利用正弦定理或余弦定理把这种混合关系式转化为边的关系式或角的关系式.另外,三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道两角及一边,用正弦定理.另外,如果知道两个角的三角函数值,则必定可以求第三角的三角函数值,此时涉及到的公式有同角的三角函数的基本关系式和两角和差的三角公式、倍角公式等.20、或.【解析】

试题解析:(1)解得或即或(2)当时,当时,考点:本题考查求通项及求和点评:解决本题的关键是利用基本量法解题21、(1);(2).【解析】

(1)由正弦和角公式,化简三角函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论