版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西安市航空六一八中学2024年数学高一下期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设等比数列的前项和为,若,则()A. B.2 C. D.2.在一段时间内,某种商品的价格(元)和销售量(件)之间的一组数据如下表:价格(元)4681012销售量(件)358910若与呈线性相关关系,且解得回归直线的斜率,则的值为()A.0.2 B.-0.7 C.-0.2 D.0.73.已知m,n表示两条不同直线,表示平面,下列说法正确的是()A.若则 B.若,,则C.若,,则 D.若,,则4.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789ABCDEF10进制0123456789101112131415现在,将十进制整数2019化成16进制数为()A.7E3 B.7F3 C.8E3 D.8F35.己知数列和的通项公式分別内,,若,则数列中最小项的值为()A. B.24 C.6 D.76.在中,若,则角的大小为()A. B. C. D.7.已知,,从射出的光线经过直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程可以用对称性转化为一条线段,这条线段的长为()A. B.3 C. D.8.数列{an}中a1=﹣2,an+1=1,则a2019的值为()A.﹣2 B. C. D.9.某赛季中,甲、乙两名篮球队员各场比赛的得分茎叶图如图所示,若甲得分的众数为15,乙得分的中位数为13,则()A.15 B.16 C.17 D.1810.sincos+cos20°sin40°的值等于A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列的公比为,关于的不等式有下列说法:①当吋,不等式的解集②当吋,不等式的解集为③当>0吋,存在公比,使得不等式解集为④存在公比,使得不等式解集为R.上述说法正确的序号是_______.12.当实数a变化时,点到直线的距离的最大值为_______.13.已知sin+cosα=,则sin2α=__14.已知算式,在方框中填入两个正整数,使它们的乘积最大,则这两个正整数之和是___.15.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上以小斜幂乘大斜幂减上,余四约之,为实一为从陽,开平方得积.”如果把以上这段文字写成公式就是,其中是的内角的对边为.若,且,则面积的最大值为________.16.在中,,,,则的面积等于______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图是某神奇“黄金数学草”的生长图.第1阶段生长为竖直向上长为1米的枝干,第2阶段在枝头生长出两根新的枝干,新枝干的长度是原来的,且与旧枝成120°,第3阶段又在每个枝头各长出两根新的枝干,新枝干的长度是原来的,且与旧枝成120°,……,依次生长,直到永远.(1)求第3阶段“黄金数学草”的高度;(2)求第13阶段“黄金数学草”的高度;18.在中,边所在的直线方程为,其中顶点的纵坐标为1,顶点的坐标为.(1)求边上的高所在的直线方程;(2)若的中点分别为,,求直线的方程.19.在如图所示的几何体中,D是AC的中点,EF∥DB.(Ⅰ)已知AB=BC,AE=EC.求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.20.已知三棱锥中,是边长为的正三角形,;(1)证明:平面平面;(2)设为棱的中点,求二面角的余弦值.21.某服装店为庆祝开业“三周年”,举行为期六天的促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,第五天该服装店经理对前五天中参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:1234546102322(1)若与具有线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)预测第六天的参加抽奖活动的人数(按四舍五入取到整数).参考公式与参考数据:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据等比数列前项和为带入即可。【详解】当时,不成立。当时,则,选择C【点睛】本题主要考查了等比数列的前项和,,属于基础题。2、C【解析】
由题意利用线性回归方程的性质计算可得的值.【详解】由于,,由于线性回归方程过样本中心点,故:,据此可得:.故选C.【点睛】本题主要考查线性回归方程的性质及其应用,属于中等题.3、B【解析】试题分析:线面垂直,则有该直线和平面内所有的直线都垂直,故B正确.考点:空间点线面位置关系.4、A【解析】
通过竖式除法,用2019除以16,取其余数,再用商除以16,取其余数,直至商为零,将余数逆着写出来即可.【详解】用2019除以16,得余数为3,商为126;用126除以16,得余数为14,商为7;用7除以16,得余数为7,商为0;将余数3,14,7逆着写,即可得7E3.故选:A.【点睛】本题考查进制的转化,只需按照流程执行即可.5、D【解析】
根据两个数列的单调性,可确定数列,也就确定了其中的最小项.【详解】由已知数列是递增数列,数列是递减数列,且计算后知,又,∴数列中最小项的值是1.故选D.【点睛】本题考查数列的单调性,数列的最值.解题时依据题意确定大小即可.本题难度一般.6、D【解析】
由平面向量数量积的定义得出、与的等量关系,再由并代入、与的等量关系式求出的值,从而得出的大小.【详解】,,,由正弦定理边角互化思想得,,,同理得,,,则,解得,中至少有两个锐角,且,,所以,,,因此,,故选D.【点睛】本题考查平面向量的数量积的计算,考查利用正弦定理、两角和的正切公式求角的值,解题的关键就是利用三角恒等变换思想将问题转化为正切来进行计算,属于中等题.7、A【解析】
根据题意,画出示意图,求出点的坐标,进而利用两点之间距离公式求解.【详解】根据题意,作图如下:已知直线AB的方程为:,则:点P关于直线AB的对称点为,则:,解得点,同理可得点P关于直线OB的对称点为:故光线的路程为.故选:A.【点睛】本题考查点关于直线的对称点的求解、斜率的求解、以及两点之间的距离,属基础题.8、B【解析】
根据递推公式,算出即可观察出数列的周期为3,根据周期即可得结果.【详解】解:由已知得,,,
,…,,
所以数列是以3为周期的周期数列,故,
故选:B.【点睛】本题考查递推数列的直接应用,难度较易.9、A【解析】
由图可得出,然后可算出答案【详解】因为甲得分的众数为15,所以由茎叶图可知乙得分数据有7个,乙得分的中位数为13,所以所以故选:A【点睛】本题考查的是茎叶图的知识,较简单10、B【解析】由题可得,.故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、③【解析】
利用等比数列的通项公式,解不等式后可得结论.【详解】由题意,不等式变为,即,若,则,当或时解为,当或时,解为,时,解为;若,则,当或时解为,当或时,解为,时,不等式无解.对照A、B、C、D,只有C正确.故选C.【点睛】本题考查等比数列的通项公式,考查解一元二次不等式,难点是解一元二次不等式,注意分类讨论,本题中需对二次项系数分正负,然后以要对两根分大小,另外还有一个是相应的一元二次方程是否有实数解分类(本题已经有两解,不需要这个分类).12、【解析】
由已知直线方程求得直线所过定点,再由两点间的距离公式求解.【详解】由直线,得,联立,解得.直线恒过定点,到直线的最大距离.故答案为:.【点睛】本题考查点到直线距离最值的求法,考查直线的定点问题,是基础题.13、【解析】∵,∴即,则.故答案为:.14、.【解析】
设填入的数从左到右依次为,则,利用基本不等式可求得的最大值及此时的和.【详解】设在方框中填入的两个正整数从左到右依次为,则,于是,,当且仅当时取等号,此时.故答案为:15【点睛】本题考查基本不等式成立的条件,属于基础题.15、【解析】
根据正弦定理和余弦定理,由可得,再由及函数求最值的知识,即可求解.【详解】,又,,时,面积的最大值为.故答案为:【点睛】本题主要考查了正弦定理、余弦定理在解三角形中的应用,考查了理解辨析能力与运算求解能力,属于中档题.16、【解析】
先用余弦定理求得,从而得到,再利用正弦定理三角形面积公式求解.【详解】因为在中,,,由余弦定理得,所以由正弦定理得故答案为:【点睛】本题主要考查正弦定理和余弦定理的应用,还考查了运算求解的能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)根据示意图,计算出第阶段、第阶段生长的高度,即可求解出第阶段“黄金数学草”的高度;(2)考虑第偶数阶段、第奇数阶段“黄金数学草”高度的生长量之间的关系,构造数列,利用数列求和完成第阶段“黄金数学草”的高度的计算.【详解】(1)因为第一阶段:,所以第阶段生长:,第阶段的生长:,所以第阶段“黄金数学草”的高度为:;(2)设第个阶段生长的“黄金数学草”的高度为,则第个阶段生长的“黄金数学草”的高度为,第阶段“黄金数学草”的高度为,所以,所以数列按奇偶性分别成公比为等比数列,所以.所以第阶段“黄金数学草”的高度为:.【点睛】本题考查等比数列以及等比数列的前项和的实际应用,难度较难.处理数列的实际背景问题,第一步要能从实际背景中分离出数列的模型,然后根据给定的条件处理对应的数列计算问题,这对分析问题的能力要求很高.18、(1);(2)【解析】
(1)由题易知边上的高过,斜率为3,可得结果.(1)求得点A的坐标可得点E的坐标,易知直线EF和直线AB的斜率一样,可得方程.【详解】(1)边上的高过,因为边上的高所在的直线与所在的直线互相垂直,故其斜率为3,方程为:(2)由题点坐标为,的中点是的一条中位线,所以,,其斜率为:,所以的斜率为所以直线的方程为:化简可得:.【点睛】本题考查了直线方程的求法,主要考查直线的点斜式方程,以及化简为一般式,属于基础题.19、(Ⅰ)证明:见解析;(Ⅱ)见解析.【解析】试题分析:(Ⅰ)根据,知与确定一个平面,连接,得到,,从而平面,证得.(Ⅱ)设的中点为,连,在,中,由三角形中位线定理可得线线平行,证得平面平面,进一步得到平面.试题解析:(Ⅰ)证明:因,所以与确定平面.连接,因为为的中点,所以,同理可得.又,所以平面,因为平面,所以.(Ⅱ)设的中点为,连.在中,因为是的中点,所以,又,所以.在中,因为是的中点,所以,又,所以平面平面,因为平面,所以平面.【考点】平行关系,垂直关系【名师点睛】本题主要考查直线与直线垂直、直线与平面平行.此类题目是立体几何中的基本问题.解答本题,关键在于能利用已知的直线与直线、直线与平面、平面与平面的位置关系,通过严密推理,给出规范的证明.本题能较好地考查考生的空间想象能力、逻辑推理能力及转化与化归思想等.20、(1)见解析(2)【解析】
(1)由题意结合正弦定理可得,据此可证得平面,从而可得题中的结论;(2)在平面中,过点作,以所在的直线分别为轴建立空间直角坐标系,由空间向量的结论求得半平面的法向量,然后求解二面角的余弦值即可.【详解】(1)证明:在中,,,,由余弦定理可得,,,,平面,平面,平面平面.(2)在平面中,过点作,以所在的直线分别为轴建立空间直角坐标系,则设平面的一个法向量为则解得,,即设平面的一个法向量为则解得,,即由图可知二面角为锐角,所以二面角的余弦值为.【点睛】本题主要考查面面垂直的证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC 23093-2:2025 EN Information technology - Internet of media things - Part 2: Discovery and communication application programming interface (API)
- 初中体育教师教学画像与学生运动技能及体能培养的关联性分析教学研究课题报告
- 高中政治教学中公民参与与民主治理实践课题报告教学研究课题报告
- 2025年广西职业师范学院马克思主义基本原理概论期末考试参考题库
- 2024年湖北三峡航空学院马克思主义基本原理概论期末考试真题汇编
- 2024年景德镇艺术职业大学马克思主义基本原理概论期末考试真题汇编
- 2025年桂林师范学院马克思主义基本原理概论期末考试真题汇编
- 2024年陕西省(98所)马克思主义基本原理概论期末考试真题汇编
- 2024年辽东学院马克思主义基本原理概论期末考试笔试真题汇编
- 2025年昆山杜克大学马克思主义基本原理概论期末考试真题汇编
- 陕西省专业技术人员继续教育2025公需课《党的二十届三中全会精神解读与高质量发展》20学时题库及答案
- CJT 288-2017 预制双层不锈钢烟道及烟囱
- nudd质量风险管理流程
- CJJ99-2017 城市桥梁养护技术标准
- 人教版六年级数学上册期末考试卷及答案
- 老年年人脓毒症的急救护理2022.09.03
- 超声内镜穿刺的护理配合
- 完善低压带电作业安全措施工作注意事项
- JB T 5082.7-2011内燃机 气缸套第7部分:平台珩磨网纹技术规范及检测方法
- 安全教育培训(完整版)
- 测生命体征操作及评分标准
评论
0/150
提交评论