上海市杨浦区交大附中2025届数学高一下期末学业水平测试试题含解析_第1页
上海市杨浦区交大附中2025届数学高一下期末学业水平测试试题含解析_第2页
上海市杨浦区交大附中2025届数学高一下期末学业水平测试试题含解析_第3页
上海市杨浦区交大附中2025届数学高一下期末学业水平测试试题含解析_第4页
上海市杨浦区交大附中2025届数学高一下期末学业水平测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市杨浦区交大附中2025届数学高一下期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的值为()A. B. C. D.2.已知集合A={x|x2﹣x﹣2<0},B={x|≥﹣1},则A∪B=()A.(﹣1,2) B.(﹣1,2] C.(0,1) D.(0,2)3.一支由学生组成的校乐团有男同学48人,女同学36人,若用分层抽样的方法从该乐团的全体同学中抽取21人参加某项活动,则抽取到的男同学人数为()A.10 B.11 C.12 D.134.已知圆,由直线上一点向圆引切线,则切线长的最小值为()A.1 B.2 C. D.5.已知三角形ABC,如果,则该三角形形状为()A.锐角三角形 B.钝角三角形 C.直角三角形 D.以上选项均有可能6.在三棱柱中,已知,,此三棱柱各个顶点都在一个球面上,则球的体积为().A. B. C. D.7.函数的零点有两个,求实数的取值范围()A. B.或 C.或 D.8.已知函数,若关于的不等式的解集为,则A. B.C. D.9.直线x-2y+2=0关于直线x=1对称的直线方程是()A.x+2y-4=0 B.2x+y-1=0 C.2x+y-3=0 D.2x+y-4=010.数列{an}的通项公式an=,若{an}前n项和为24,则n为().A.25 B.576 C.624 D.625二、填空题:本大题共6小题,每小题5分,共30分。11.在锐角中,则的值等于.12.在中,已知角的对边分别为,且,,,若有两解,则的取值范围是__________.13.已知球的一个内接四面体中,,过球心,若该四面体的体积为,且,则球的表面积的最小值为_________.14.已知,,则________(用反三角函数表示)15.382与1337的最大公约数是__________.16.已知,则与的夹角等于___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,.(1)证明:是等比数列;(2)求数列的前n项和.18.如图,正方体.(1)求证:平面;(2)求异面直线AC与所成角的大小.19.已知函数,.(1)将化为的形式(,,)并求的最小正周期;(2)设,若在上的值域为,求实数、的值;(3)若对任意的和恒成立,求实数取值范围.20.已知各项为正数的数列满足:且.(1)证明:数列为等差数列.(2)若,证明:对一切正整数n,都有21.在中,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

直接利用诱导公式结合特殊角的三角函数求解即可.【详解】,故选B.【点睛】本题主要考查诱导公式以及特殊角的三角函数,意在考查对基础知识的掌握情况,属于简单题.2、B【解析】

先分别求出集合A和B,由此能求出A∪B.【详解】∵集合A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|≥﹣1}={x|0<x≤2},∴A∪B={x|﹣1<x≤2}=(﹣1,2].故选B.【点睛】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.3、C【解析】

先由男女生总数以及抽取的人数确定抽样比,由男生总人数乘以抽样比即可得出结果.【详解】用分层抽样的方法从校乐团中抽取人,所得抽样比为,因此抽取到的男同学人数为人.故选C【点睛】本题主要考查分层抽样,熟记概念即可,属于常考题型.4、A【解析】

将圆的方程化为标准方程,找出圆心坐标与半径,求出圆心到直线的距离,利用切线的性质及勾股定理求处切线长的最小值,即可得到答案.【详解】将圆化为标准方程,得,所以圆心坐标为,半径为,则圆心到直线的距离为,所以切线长的最小值为,故选A.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到圆的标准方程,点到直线的距离公式,以及数形结合思想的应用,属于基础题.5、B【解析】

由正弦定理化简已知可得:,由余弦定理可得,可得为钝角,即三角形的形状为钝角三角形.【详解】由正弦定理,,可得,化简得,由余弦定理可得:,又,为钝角,即三角形为钝角三角形.故选:B.【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.6、A【解析】试题分析:直三棱柱的各项点都在同一个球面上,如图所示,所以中,,所以下底面的外心为的中点,同理,可得上底面的外心为的中点,连接,则与侧棱平行,所以平面,再取的中点,可得点到的距离相等,所以点是三棱柱的为接球的球心,因为直角中,,所以,即外接球的半径,因此三棱柱外接球的体积为,故选A.考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.7、B【解析】

由题意可得,的图象(红色部分)和直线有2个交点,数形结合求得的范围.【详解】由题意可得的图象(红色部分)和直线有2个交点,如图所示:故有或,故选:B.【点睛】已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的图象的交点个数问题.8、B【解析】

由题意可得,且,3为方程的两根,运用韦达定理可得,,的关系,可得的解析式,计算,(1),(4),比较可得所求大小关系.【详解】关于的不等式的解集为,可得,且,3为方程的两根,可得,,即,,,,可得,(1),(4),可得(4)(1),故选.【点睛】本题主要考查二次函数的图象和性质、函数与方程的思想,以及韦达定理的运用。9、A【解析】

所求直线的斜率与直线x-2y+2=0的斜率互为相反数,且在x=1处有公共点,求解即可。【详解】直线x-2y+2=0与直线x=1的交点为P1,3因为直线x-2y+2=0的斜率为12,所以所求直线的斜率为-故所求直线方程为y-32=-故答案为A.【点睛】本题考查了直线的斜率,直线的方程,直线关于直线的对称问题,属于基础题。10、C【解析】an==-(),前n项和Sn=-[(1-)+(-)]+…+()]=-1=24,故n=624.故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】设由正弦定理得12、【解析】

利用正弦定理得到,再根据有两解得到,计算得到答案.【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理,有两解,意在考查学生的计算能力.13、【解析】

求出面积的最大值,结合棱锥的体积可得到平面距离的最小值,进一步求得球的半径的最小值得答案.【详解】解:在中,由,且,

得,得.

当且仅当时,有最大值1.

过球心,且四面体的体积为1,

∴三棱锥的体积为.

则到平面的距离为.

此时的外接圆的半径为,则球的半径的最小值为,

∴球O的表面积的最小值为.

故答案为:.【点睛】本题考查多面体外接球表面积最值的求法,考查逻辑思维能力与推理运算能力,考查空间想象能力,是中档题.14、【解析】∵,,∴.故答案为15、191【解析】

利用辗转相除法,求382与1337的最大公约数.【详解】因为,,所以382与1337的最大公约数为191,故填:.【点睛】本题考查利用辗转相除法求两个正整数的最大公因数,属于容易题.16、【解析】

利用再结合已知条件即可求解【详解】由,即,故答案为:【点睛】本题考查向量的夹角计算公式,在考题中应用广泛,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】

(1)由题设,化简得,即可证得数列为等比数列.(2)由(1),根据等比数列的通项公式,求得,利用等比数列的前n项和公式,即可求得数列的前n项和.【详解】(1)由题意,数列满足,所以又因为,所以,即,所以是以2为首项,2为公比的等比数列.(2)由(1),根据等比数列的通项公式,可得,即,所以,即.【点睛】本题主要考查了等比数列的定义,以及等比数列的通项公式及前n项和公式的应用,其中解答中熟记等比数列的定义,以及等比数列的通项公式和前n项和的公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1)见解析(2)【解析】

(1)证明,,即得证;(2)求出即得异面直线AC与所成角的大小.【详解】(1)证明:因为为正方体,所以ABCD为正方形.所以,又因为平面ABCD,平面ABCD,故,又,平面,所以平面.(2)因为,所以直线AC与所成的角或补角即为AC与的角,又三角形为等边三角形,所以,即直线AC与所成的角为.【点睛】本题主要考查线面位置关系的证明,考查异面直线所成角的计算,意在考查学生对这些知识的理解掌握水平.19、(1),;(2),,或,;(3).【解析】

(1)由三角函数的恒等变换公式和正弦函数的周期的公式,即可求解;(2)由正弦函数的图象与性质,讨论的范围,得到的方程组,即可求得的值;(3)对讨论奇数和偶数,由参数分离和函数的最值,即可求得的范围.【详解】(1)由题意,函数所以函数的最小正周期为.(2)由(1)知,当时,则,所以,即,令,则,函数,即,,当时,在为单调递增函数,可得且,即,解得;当时,在为单调递减函数,可得且,即,解得;综上可得,或,;(3)由(2)可知,当时,,当为奇数时,,即为,即恒成立,又由,即;当为偶数时,,即为,即恒成立,又由,即;综上可得,实数满足,即实数取值范围.【点睛】本题主要考查了三角恒等变换,以及三角函数的图象与性质的应用,其中解中熟练化简函数的解析式,合理应用三角函数的图象与性质,以及利用分类讨论和分离参数求解是解答的关键,着重考查了分类讨论思想,分离参数,以及推理与运算能力,属于中档试题.20、(1)证明见解析.(2)证明见解析.【解析】

(1)根据所给递推公式,将式子变形,即可由等差数列定义证明数列为等差数列.(2)根据数列为等差数列,结合等差数列通项公式求法求得通项公式,并变形后令.由求得的取值范围,即可表示出,由不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论