山东省定陶县达标名校中考数学考前最后一卷及答案解析_第1页
山东省定陶县达标名校中考数学考前最后一卷及答案解析_第2页
山东省定陶县达标名校中考数学考前最后一卷及答案解析_第3页
山东省定陶县达标名校中考数学考前最后一卷及答案解析_第4页
山东省定陶县达标名校中考数学考前最后一卷及答案解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省定陶县达标名校中考数学考前最后一卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在6×4的正方形网格中,△ABC的顶点均为格点,则sin∠ACB=()A. B.2 C. D.2.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2π B.4π C.5π D.6π3.已知关于x的不等式ax<b的解为x>-2,则下列关于x的不等式中,解为x<2的是()A.ax+2<-b+2 B.–ax-1<b-1 C.ax>b D.4.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,2) B.(4,1) C.(4,) D.(4,)5.若x是2的相反数,|y|=3,则的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或46.如图,在△ABC中,∠ACB=90°,点D为AB的中点,AC=3,cosA=,将△DAC沿着CD折叠后,点A落在点E处,则BE的长为()A.5 B.4 C.7 D.57.如图图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.8.观察下列图案,是轴对称而不是中心对称的是()A. B. C. D.9.下列多边形中,内角和是一个三角形内角和的4倍的是()A.四边形B.五边形C.六边形D.八边形10.有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.已知∠=32°,则∠的余角是_____°.12.如图,角α的一边在x轴上,另一边为射线OP,点P(2,2),则tanα=_____.13.如图,Rt△ABC中,AC=3,BC=4,∠ACB=90°,P为AB上一点,且AP=2BP,若点A绕点C顺时针旋转60°,则点P随之运动的路径长是_________14.分解因式:9x3﹣18x2+9x=.15.如图,在□ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是________.16.如图,菱形的边,,是上一点,,是边上一动点,将梯形沿直线折叠,的对应点为,当的长度最小时,的长为__________.17.化简3m﹣2(m﹣n)的结果为_____.三、解答题(共7小题,满分69分)18.(10分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.19.(5分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.(8分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.“从中任意抽取1个球不是红球就是白球”是事件,“从中任意抽取1个球是黑球”是事件;从中任意抽取1个球恰好是红球的概率是;学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.21.(10分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.22.(10分)若关于的方程无解,求的值.23.(12分)问题提出(1)如图1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圆半径R的值;问题探究(2)如图2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,点D为边BC上的动点,连接AD以AD为直径作⊙O交边AB、AC分别于点E、F,接E、F,求EF的最小值;问题解决(3)如图3,在四边形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,连接AC,线段AC的长是否存在最小值,若存在,求最小值:若不存在,请说明理由.24.(14分)在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0).△AOB绕着O顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.(I)如图1,若α=30°,求点B′的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

如图,由图可知BD=2、CD=1、BC=,根据sin∠BCA=可得答案.【详解】解:如图所示,∵BD=2、CD=1,∴BC===,则sin∠BCA===,故选C.【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.2、B【解析】

连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【详解】连接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC的长为:=4π.故选B.【点睛】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式.3、B【解析】∵关于x的不等式ax<b的解为x>-2,∴a<0,且,即,∴(1)解不等式ax+2<-b+2可得:ax<-b,,即x>2;(2)解不等式–ax-1<b-1可得:-ax<b,,即x<2;(3)解不等式ax>b可得:,即x<-2;(4)解不等式可得:,即;∴解集为x<2的是B选项中的不等式.故选B.4、D【解析】

由已知条件得到AD′=AD=4,AO=AB=2,根据勾股定理得到OD′==2,于是得到结论.【详解】解:∵AD′=AD=4,

AO=AB=1,

∴OD′==2,

∵C′D′=4,C′D′∥AB,

∴C′(4,2),故选:D.【点睛】本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.5、D【解析】

直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.【详解】解:∵x是1的相反数,|y|=3,∴x=-1,y=±3,∴y-x=4或-1.故选D.【点睛】此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.6、C【解析】

连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可.【详解】解:连接AE,∵AC=3,cos∠CAB=,∴AB=3AC=9,由勾股定理得,BC==6,∠ACB=90°,点D为AB的中点,∴CD=AB=,S△ABC=×3×6=9,∵点D为AB的中点,∴S△ACD=S△ABC=,由翻转变换的性质可知,S四边形ACED=9,AE⊥CD,则×CD×AE=9,解得,AE=4,∴AF=2,由勾股定理得,DF==,∵AF=FE,AD=DB,∴BE=2DF=7,故选C.【点睛】本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7、A【解析】A.是轴对称图形,是中心对称图形,故本选项正确;B.是中心对称图,不是轴对称图形,故本选项错误;C.不是中心对称图,是轴对称图形,故本选项错误;D.不是轴对称图形,是中心对称图形,故本选项错误。故选A.8、A【解析】试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、是轴对称图形,也是中心对称图形,故本选项不符合题意.故选A.点睛:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做对称中心.9、C【解析】

利用多边形的内角和公式列方程求解即可【详解】设这个多边形的边数为n.由题意得:(n﹣2)×180°=4×180°.解得:n=1.答:这个多边形的边数为1.故选C.【点睛】本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键.10、C【解析】试题分析:根据主视图是从正面看得到的图形,可得答案.解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选C.考点:简单组合体的三视图.二、填空题(共7小题,每小题3分,满分21分)11、58°【解析】

根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角可得答案.【详解】解:∠α的余角是:90°-32°=58°.故答案为58°.【点睛】本题考查余角,解题关键是掌握互为余角的两个角的和为90度.12、【解析】解:过P作PA⊥x轴于点A.∵P(2,),∴OA=2,PA=,∴tanα=.故答案为.点睛:本题考查了解直角三角形,正切的定义,坐标与图形的性质,熟记三角函数的定义是解题的关键.13、π【解析】

作PD⊥BC,则点P运动的路径长是以点D为圆心,以PD为半径,圆心角为60°的一段圆弧,根据相似三角形的判定与性质求出PD的长,然后根据弧长公式求解即可.【详解】作PD⊥BC,则PD∥AC,∴△PBD~△ABC,∴PDAC∵AC=3,BC=4,∴AB=32∵AP=2BP,∴BP=13∴PD=5∴点P运动的路径长=60π×1180故答案为:π3【点睛】本题考查了相似三角形的判定与性质,弧长的计算,根据相似三角形的判定与性质求出PD的长是解答本题的关键.14、9x【解析】试题分析:首先提取公因式9x,然后利用完全平方公式进行因式分解.原式=9x(-2x+1)=9x.考点:因式分解15、2【解析】试题解析:连接EG,

∵由作图可知AD=AE,AG是∠BAD的平分线,

∴∠1=∠2,

∴AG⊥DE,OD=DE=1.

∵四边形ABCD是平行四边形,

∴CD∥AB,

∴∠2=∠1,

∴∠1=∠1,

∴AD=DG.

∵AG⊥DE,

∴OA=AG.

在Rt△AOD中,OA==4,

∴AG=2AO=2.

故答案为2.16、【解析】如图所示,过点作,交于点.在菱形中,∵,且,所以为等边三角形,.根据“等腰三角形三线合一”可得,因为,所以.在中,根据勾股定理可得,.因为梯形沿直线折叠,点的对应点为,根据翻折的性质可得,点在以点为圆心,为半径的弧上,则点在上时,的长度最小,此时,因为.所以,所以,所以.点睛:A′为四边形ADQP沿PQ翻折得到,由题目中可知AP长为定值,即A′点在以P为圆心、AP为半径的圆上,当C、A′、P在同一条直线时CA′取最值,由此结合直角三角形勾股定理、等边三角形性质求得此时CQ的长度即可.17、m+2n【解析】分析:先去括号,再合并同类项即可得.详解:原式=3m-2m+2n=m+2n,故答案为:m+2n.点睛:本题主要考查整式的加减,解题的关键是掌握去括号与合并同类项的法则.三、解答题(共7小题,满分69分)18、4小时.【解析】

本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【详解】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点睛】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.19、(1);(2).【解析】试题分析:(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20、(1)必然,不可能;(2);(3)此游戏不公平.【解析】

(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;(2)直接利用概率公式求出答案;(3)首先画出树状图,进而利用概率公式求出答案.【详解】(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件;故答案为必然,不可能;(2)从中任意抽取1个球恰好是红球的概率是:;故答案为;(3)如图所示:,由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:;则选择乙的概率为:,故此游戏不公平.【点睛】此题主要考查了游戏公平性,正确列出树状图是解题关键.21、证明见解析.【解析】由已知条件BE∥DF,可得出∠ABE=∠D,再利用ASA证明△ABE≌△FDC即可.证明:∵BE∥DF,∴∠ABE=∠D,在△ABE和△FDC中,∠ABE=∠D,AB=FD,∠A=∠F∴△ABE≌△FDC(ASA),∴AE=FC.“点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.22、【解析】分析:该分式方程无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.详解:去分母得:x(x-a)-1(x-1)=x(x-1),去括号得:x2-ax-1x+1=x2-x,移项合并得:(a+2)x=1.(1)把x=0代入(a+2)x=1,∴a无解;把x=1代入(a+2)x=1,解得a=1;(2)(a+2)x=1,当a+2=0时,0×x=1,x无解即a=-2时,整式方程无解.综上所述,当a=1或a=-2时,原方程无解.故答案为a=1或a=-2.点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.23、(1)△ABC的外接圆的R为1;(2)EF的最小值为2;(3)存在,AC的最小值为9.【解析】

(1)如图1中,作△ABC的外接圆,连接OA,OC.证明∠AOC=90°即可解决问题;(2)如图2中,作AH⊥BC于H.当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短;(3)如图3中,将△ADC绕点A顺时针旋转90°得到△ABE,连接EC,作EH⊥CB交CB的延长线于H,设BE=CD=x.证明EC=AC,构建二次函数求出EC的最小值即可解决问题.【详解】解:(1)如图1中,作△ABC的外接圆,连接OA,OC.∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,又∵∠AOC=2∠B,∴∠AOC=90°,∴AC=1,∴OA=OC=1,∴△ABC的外接圆的R为1.(2)如图2中,作AH⊥BC于H.∵AC=8,∠C=45°,∴AH=AC•sin45°=8×=8,∵∠BAC=10°,∴当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短,如图2﹣1中,当AD⊥BC时,作OH⊥EF于H,连接OE,OF.∵∠EOF=2∠BAC=20°,OE=OF,OH⊥EF,∴EH=HF,∠OEF=∠OFE=30°,∴EH=OF•cos30°=4•=1,∴EF=2EH=2,∴EF的最小值为2.(3)如图3中,将△ADC绕点A顺时针旋转90°得到△ABE,连接EC,作EH⊥CB交CB的延长线于H,设BE=CD=x.∵∠AE=AC,∠CAE=90°,∴EC=AC,∠AEC=∠ACE=45°,∴EC的值最小时,AC的值最小,∵∠BCD=∠ACB+∠ACD=∠ACB+∠AEB=30°,∴∠∠BEC+∠BCE=10°,∴∠EBC=20°,∴∠EBH=10°,∴∠BEH=30°,∴BH=x,EH=x,∵CD+BC=2,CD=x,∴BC=2﹣x∴EC2=EH2+CH2=(x)2+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论