版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题04一次函数的实际应用(五大类型)【题型1:根式实际问题列除一次函数表达式】【题型2:利用一次函数解决方案问题】【题型3:利用一次函数解决销售利润问题】【题型4:利用一次函数解决行程问题】【题型5:利用一次函数解决运输问题】【题型1:根式实际问题列除一次函数表达式】1.(2023春•迁安市期末)平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是()A.y=120﹣x(0<x<120) B.y=120﹣x(0≤x≤120) C.y=240﹣x(0<x<240) D.y=240﹣x(0≤x≤240)2.(2023春•礼泉县期中)为了测试一种皮球的弹跳高度与下落高度之间的关系,通过试验得到下列一组数据(单位:厘米):下落高度405080100150弹跳高度2025405075在这个问题中,如果该皮球的下落高度为180厘米,估计相对应的弹跳高度为()A.90厘米 B.85厘米 C.80厘米 D.100厘米3.(2023•南海区一模)某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m.如图所示,设矩形一边长为xm,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y与x满足的函数关系是()A.y=20x B.y=40﹣2x C. D.y=x(40﹣2x)4.(2022秋•东营区校级期末)汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,则汽车距天津的路程S(千米)与行驶时间t(时)的函数关系及自变量的取值范围是()A.S=120﹣30t(0≤t≤4) B.S=30t(0≤t≤4) C.S=120﹣30t(t>0) D.S=30t(t=4)5.(2022春•广阳区校级期末)某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x升.如果每升汽油7.6元,求油箱内汽油的总价y(元)与x(升)之间的函数关系是()A.y=7.6x(0≤x≤20) B.y=7.6x+76(0≤x≤20) C.y=7.6x+10(0≤x≤20) D.y=7.6x+76(10≤x≤30)6.(2022春•平遥县期中)百货大楼进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其长度x与售价y如下表,下列用长度x表示售价y的关系式中,正确的是()长度x/m1234…售价y/元8+0.316+0.624+0.932+1.2…A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x7.(2023春•澄海区期末)一根蜡烛长25cm,点燃后每小时燃烧5cm,蜡烛燃烧时剩下的高度h(厘米)与燃烧时间t(小时)(0≤t≤5)之间的关系是.8.(2023春•徐汇区期末)某市出租车白天的收费起步价为14元,即路程不超过3公里时收费14元,超过部分每公里收费2.4元.如果乘客白天乘坐出租车的路程x(x>3)公里,乘车费为y元,那么y与x之间的关系式为.9.(2023秋•包河区校级月考)某水果店以每千克8元的价格购进100千克黄桃,销售一半后进行打折销售,销售所得金额y(元与销售量x(g)之间的函数关系图象如图,则销售完这100千克黄桃获得的利润是元.10.(2023春•永春县期中)已知等腰三角形的周长为12,设腰长为x,底边长为y.(1)试写出y关于x的函数解析式,并直接写出自变量x的取值范围;(2)当x=5时,求出函数值.【题型2:利用一次函数解决方案问题】11.(2023秋•萧山区期中)某厨具店购入10台A型电饭煲和20台B型电饭煲进行销售,共花费5600元.已知每台B型电饭煲的进价比A型电饭煲少20元.(1)A,B两种型号的电饭煲每台进价分别为多少元?(2)为了满足市场需求,厨具店决定用不超过9560元的资金再次购入这两种型号的电饭锅共50台,且A型电饭煲的数量不少于B型电饭煲的数量,问厨具店有哪几种进货方案?(3)在(2)的条件下,若50台电饭煲全部售完,已知A型电饭煲售价为每台300元,B型电饭煲售价为每台260元.则用哪种进货方案厨具店获利最大?并请求出最大利润.12.(2023秋•福田区校级期中)我校将举办一年一度的秋季运动会,需要采购一批某品牌的乒乓球拍和配套的乒乓球,一副球拍标价80元,一盒球标价25元.体育商店提供了两种优惠方案,具体如下:方案甲:买一副乒乓球拍送一盒乒乓球,其余乒乓球按原价出售;方案乙:按购买金额打9折付款.学校欲购买这种乒乓球拍10副,乒乓球x(x≥10)盒.(1)请直接写出两种优惠办法实际付款金额y甲(元),y乙(元)与x(盒)之间的函数关系式.(2)如果学校需要购买15盒乒乓球,哪种优惠方案更省钱?(3)如果学校提供经费为1800元,选择哪个方案能购买更多乒乓球?13.(2023秋•光明区期中)冰墩墩(BingDuenDuen)是2022年北京冬季奥运会的吉祥物.将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员.在冬奥会期间,冰墩墩玩偶持续畅销.小冬从某进货渠道购进A,B两款冰墩墩玩偶共30个,在自家商店销售.两款玩偶的进货价和销售价如表:价格类别A款玩偶B款玩偶进货价(元/个)2015销售价(元/个)2820设A款玩偶购进x个,获利y元.(1)求出y(元)与x(个)之间的函数表达式;(2)进货渠道规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小冬应如何设计进货方案才能获得最大利润,最大利润是多少?14.(2023秋•茂南区期中)某文具商店文具促销给出了两种优惠方案:①买一支钢笔赠送一本笔记本,多于钢笔数的笔记本按原价收费;②钢笔和笔记本均按定价的八折收费.已知每支钢笔定价为15元,每本笔记本定价为4元.某顾客准备购买x支钢笔和笔记本(x+10)本,设选择第一种方案购买所需费用为y1元,选择第二种方案购买所需费用为y2元.(1)请分别写出y1,y2与x之间的关系式:,;(2)若该顾客准备购买10支钢笔,且只能选择其中一种优惠方案,请你通过计算说明选择哪种方案更为优惠.15.(2023秋•金水区校级期中)郑州市政府为民生办实事,将污染多年的“贾鲁河”进行绿化改造,现需要购买大量的景观树.某苗木种植公司给出以下收费方案:方案一:购买一张会员卡,所有购买的树苗按七折优惠;方案二:不购买会员卡,所有购买的树苗按九折优惠.设该市购买的景观树树苗棵数为x棵,方案一所需费用y1=k1x+b1,方案二所需费用y2=k2x,其函数图象如图所示,请根据图象回答下列问题.(1)k1=,b1=;(2)求每棵树苗的原价;(3)求按照方案二购买所需费用的函数关系式y2=k2x,并说明k2的实际意义;(4)若该市需要购买景观树600棵,采用哪种方案购买所需费用更少?请说明理由.16.(2023•龙川县三模)春天来了,我校计划组织师生共1600人坐A、B两种型号的大巴车外出春游,且A型车每辆租金为580元,B型车每辆租金为700元,为了保证安全,校方要求必须保证人人都有座位.学生南南发现若租2辆A型与3辆B型大巴车恰好能坐下195人,若租3辆A型与2辆B型大巴车恰好能坐下180人.(1)请问1辆A型与1辆B型大巴车各有几座?(2)现学校决定租两种型号的大巴车共50辆作为出行交通工具,但政教主任蒋老师发现租车总经费不能超过32000元.他想运用函数的知识进行分析,为学校寻找最节省的租车方案.现蒋老师设学校租了A型大巴车x辆,租车总费用为w元.请你帮蒋老师完成分析过程,确定共有几种租车方案?哪种租车方案最省钱?并求出最低费用.【题型3:利用一次函数解决销售利润问题】17.(2023秋•市南区校级期中)某校九年级学生陈强和张红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为6元/千克,下面是他们在活动结束后的对话.陈强:如果以10元/千克的价格销售,那么每天可获取利润800元.张红:我通过调查验证,发现每天的销售量y(千克)与销售单价x(元)之间存在y=kx+500(k是常数,且k≠0)的关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)当销售单价为9元时,该超市销售这种水果每天获得的利润为多少元?[利润=销售量×(销售单价﹣进价)].18.(2023•龙岗区校级一模)临近期末,某文具店需要购进一批2B涂卡铅笔和0.5mm黑色水笔,已知用600元购进铅笔与用400元购进水笔的数量相同,且每支铅笔比每支水笔进价高1元.(1)求这两种笔每支的进价分别是多少元?(2)该商店计划购进水笔的数量比铅笔数量的2倍还多60支,且两种笔的总数量不超过360支,售价见店内海报(如下所示).该商店应如何安排进货才能使利润最大?最大利润是多少?为期末加油!2B涂卡铅笔4元/支0.5mm黑色水笔2.5元/支19.(2023秋•海安市月考)小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y盒,y与x之间的关系如表所示:第x天1≤x≤66<x≤15每天的销售量y/盒10x+6(1)求p与x的函数关系式;(2)若每天的销售利润为w元,求w与x的函数关系式;(3)请你帮小张求出第几天的销售利润最大,最大销售利润是多少元?20.(2023•秦都区一模)平板电脑专卖店的老板计划用不超过16万元的资金购进A,B两种型号的平板电脑100台.其中,A型平板电脑的进价是1200元/台,B型平板电脑的进价是2000元/台.为了让利于顾客、老板在网上做了市场调研,结合其他成本,决定将A型平板电脑的售价定为1560元/台无优惠,B型平板电脑标价3350元/台后打8折销售.设购进A型平板电脑x台,销售这100台平板电脑的总利润为y元.(1)求y与x的函数关系式.(2)求这家专卖店销售这100台平板电脑的最大利润.21.(2023春•黄石期末)某商场准备购进甲乙两种服装进行销售.甲种服装每件进价160元,售价220元;乙种服装每件进价120元,售价160元.现计划购进两种服装共100件,其中甲种服装不少于60件.设购进甲种服装x件,两种服装全部售完,商场获利y元.(1)求y与x之间的函数关系式;(2)若购进100件服装的总费用不超过15000元,求最大利润为多少元?(3)在(2)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装每件进价减少b元,售价不变,且a﹣b=4,若最大利润为4950元,请直接写出a的值.22.(2022秋•碑林区校级期末)某商场代销甲、乙两种商品,其中甲种商品进价为120元/件,售价为130元/件,乙种商品进价为100元/件,售价为150元/件.(1)若商场用39000元购进这两种商品若干,销售完后可获利润9500元,则该商场购进甲、乙两种商品各多少件?(2)现商场需购进这两种商品共200件,设购进甲种商品a件,两种商品销售完后可获总利润为w元,如果购进甲种商品的数量至少100件,求销售完这批商品获得的最大利润.23.(2023秋•六安月考)某校为达成省体育器材类装备,计划在京东惠购一次性购进篮球和足球共50个,某电商内部信息表给出其进价与售价间的关系如表:篮球足球进价(元/个)10590售价(元/个)135125(1)学校用4920元以进价购进这批篮球和足球,求购进篮球和足球各多少个;(2)设该电商所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数表达式(不要求写出x的取值范围);(3)因资金紧张,学校的进货成本只能在4745元的限额内,请为学校设计一种进货方案使得尽可能多地购买篮球和足球,同时要使电商利润最小;并求出利润的最小值.【题型4:利用一次函数解决行程问题】24.(2023秋•福田区期中)甲、乙两人从学校出发,沿相同的线路跑向公园.甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地休息等候甲,两人相遇后,乙和甲一起以甲原来的速度继续跑向公园.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)之间函数关系的图象,根据题意填空:(1)在跑步的全过程中,甲的速度为米/秒;(2)a=;b=;(3)求乙出发多少秒后与甲第一次相遇.25.(2023•金华)兄妹俩放学后沿图1中的马路从学校出发,到书吧看书后回家,哥哥步行先出发,途中速度保持不变:妹妹骑车,到书吧前的速度为200米/分,图2中的图象分别表示两人离学校的路程s(米)与哥哥离开学校的时间t(分)的函数关系.(1)求哥哥步行的速度.(2)已知妹妹比哥哥迟2分钟到书吧.①求图中a的值;②妹妹在书吧待了10分钟后回家,速度是哥哥的1.6倍,能否在哥哥到家前追上哥哥?若能,求追上时兄妹俩离家还有多远;若不能,说明理由.26.(2023秋•历城区校级期中)在A、B两地之间有服务区C,甲车由A地驶往服务区C,乙车由B地驶往A地,两车同时出发,匀速行驶.如图是甲、乙两车分别距离服务区C的路程y1、y2(单位:千米)与乙车行驶时间x(单位:小时)之间的函数图象,结合图象信息,解答下列问题:(1)甲车的速度是千米/时;(2)求图象中线段DF的函数解析式;(3)当两车距服务区C的路程之和是360千米时,直接写出此时乙车的行驶时间.27.(2023春•岳阳县期末)A,B两地相距300km,甲、乙两人分别开车从A地出发前往B地,其中甲先出发1h,如图是甲,乙行驶路程y甲(km),y乙(km)随行驶时间x(h)变化的图象,请结合图象信息.解答下列问题:(1)分别求出y甲,y乙与x之间的函数解析式;(2)求出点C的坐标;(3)在乙的行驶过程中,当x为何值时,甲乙相距20千米.28.(2023•大安市四模)甲、乙两车分别从M,N两地出发,沿同一公路相向匀速行驶,两车分别抵达N,M两地后即停止行驶.已知乙车比甲车提前出发,设甲、乙两车之间的路程为s(单位:km),乙车行驶的时间为t(单位:h),s与t的函数关系如图所示.(1)M,N两地之间的公路路程是km,乙车的速度是km/h,m的值为;(2)求线段EF的解析式.(3)直接写出甲车出发多长时间,两车相距140km.【题型5:利用一次函数解决运输问题】29.(2023秋•文圣区月考)接种新冠病毒疫苗,建立全民免疫屏障,是战胜病毒的重要手段.北京科兴中维需运输一批疫苗到我市疾控中心,据调查得知,2辆A型冷链运输车与3辆B型冷链运输车一次可以运输600盒;5辆A型冷链运输车与6辆B型冷链运输车一次可以运输1350盒.(1)求每辆A型车和每辆B型车一次可以分别运输多少盒疫苗;(2)计划用两种冷链运输车共12辆运输这批疫苗,A型车一次需费用5000元,B型车一次需费用3000元.若运输物资不少于1500盒,且总费用小于54000元,请求出哪种方案所需费用最少,最少费用是多少?30.(2023春•古冶区期末)2022年春,新冠肺炎疫情再次爆发后,全国人民众志成城抗击疫情.某省A,B两市成为疫情重灾区,抗疫物资一度严重紧缺,对口支援的C,D市获知A,B两市分别急需抗疫物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些抗疫物资全部调往A,B两市.已知从C市运往A,B两市的费用分别为每吨20元和25元,从D市运往往A,B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨,并绘制出表:A(吨)B(吨)合计(吨)C(吨)ab240D(吨)cx260总计(吨)200300500(1)a=,b=,c=(用含x的代数式表示);(2)设C,D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)由于途经地区的全力支持,D市到B市的运输路线得以改善和优化,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变,若C,D两市的总运费的最小值为10320元,求m的值.31.(2023春•石嘴山校级期末)某公司到果品基地购买某种优质水果慰问医务工作者,果品基地对购买量在3000kg以上(含3000kg)的顾客采用两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费用为5000元.(1)分别写出该公司两种购买方案付款金额y(元)与所购买的水果量x(kg)之间的函数关系式,并写出自变量x的取值范围.(2)当购买量在哪一范围时,选择哪种购买方案付款最少?并说明理由.32.(2023春•固原期末)某果品公司要请汽车运输公司或火车货运站将60吨水果从A地运到B地.已知汽车和火车从A地到B地的运输路程都是x千米,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费外,其他要收取的费用和有关运输资料由下表列出:运输单位运输速度(千米/时)运费单价元/(吨•千米)运输途中冷藏元/(吨•时)装卸总费用(元)汽车货运公司751.554000火车货运站1001.356600(1)用含x的式子分别表示汽车货运公司和火车货运站运送这批水果所要收取的总费用(总运费=运费+运输途中冷藏费+装卸总费用);(2)果品公司应该选择哪家运输单位运送水果花费少?33.(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年吉林省经济管理干部学院马克思主义基本原理概论期末考试笔试真题汇编
- 2025年景德镇艺术职业大学马克思主义基本原理概论期末考试笔试真题汇编
- 2025年兰州铁路工程职工大学马克思主义基本原理概论期末考试笔试题库
- 2025年长江艺术工程职业学院马克思主义基本原理概论期末考试笔试题库
- 2024年滨州科技职业学院马克思主义基本原理概论期末考试真题汇编
- 2025高一秋季生物真题答案
- 员工职业发展培训方案
- 法律咨询公司企业法律顾问协议
- 应急管理部安全培训证课件
- 标准制定2026年网络内容审核合同协议
- 抢劫案件侦查课件
- 2025中国企业软件出海报告
- 2025年大学《农药化肥-农药残留检测》考试模拟试题及答案解析
- 二氧化碳爆破施工技术方案
- 安全生产工作成效总结
- 16《我的叔叔于勒》公开课一等奖创新教学设计
- 农资超市开业筹备与运营实施方案
- 药店代煎免责协议书10篇
- 大语言模型金融领域应用评测指南
- 产后恶露护理
- 基础胶水知识培训课件
评论
0/150
提交评论