福建省南平市第一中学2024届高一数学第二学期期末调研试题含解析_第1页
福建省南平市第一中学2024届高一数学第二学期期末调研试题含解析_第2页
福建省南平市第一中学2024届高一数学第二学期期末调研试题含解析_第3页
福建省南平市第一中学2024届高一数学第二学期期末调研试题含解析_第4页
福建省南平市第一中学2024届高一数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省南平市第一中学2024届高一数学第二学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在ΔABC中,若,则=()A.6 B.4 C.-6 D.-42.设函数,,其中,.若,且的最小正周期大于,则()A., B.,C., D.,3.若双曲线的中心为原点,是双曲线的焦点,过的直线与双曲线相交于,两点,且的中点为,则双曲线的方程为()A. B. C. D.4.在各项均为正数的等比数列中,若,则()A.1 B.4C.2 D.5.函数的单调减区间为()A.(kπ﹣,kπ],(k∈Z) B.(kπ﹣,kπ],(k∈Z)C.(kπ﹣,kπ+],(k∈Z) D.(kπ+,kπ+],(k∈Z)6.得到函数的图象,只需将的图象()A.向左移动 B.向右移动 C.向左移动 D.向右移动7.下列结论正确的是()A.若则; B.若,则C.若,则 D.若,则;8.函数的部分图象如图所示,函数,则下列结论正确的是()A.B.函数与的图象均关于直线对称C.函数与的图象均关于点对称D.函数与在区间上均单调递增9.在ΔABC中,角A,B,C对应的边分别是a,b,c,已知A=60°,a=43,A.30∘ B.45∘ C.6010.已知内角的对边分别为,满足且,则△ABC()A.一定是等腰非等边三角形 B.一定是等边三角形C.一定是直角三角形 D.可能是锐角三角形,也可能是钝角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.在一个不透明的布袋中,红色,黑色,白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球,黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是_________个.12.________13.已知,且,则的取值范围是____________.14.如图所示,已知,用表示.15.已知与之间的一组数据,则与的线性回归方程必过点__________.16.设无穷等比数列的公比为,若,则__________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,(1)求;(2)若,求.18.如图所示,在三棱柱中,与都为正三角形,且平面,分别是的中点.求证:(1)平面平面;(2)平面平面.19.如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:;(2)若,,,试画出二面角的平面角,并求它的余弦值.20.在中,角,,的对边分别为,,.且满足.(Ⅰ)求角;(Ⅱ)若的面积为,,求边.21.某城市理论预测2020年到2024年人口总数与年份的关系如下表所示:年份202x(年)01234人口数y(十万)5781119(1)请在右面的坐标系中画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(3)据此估计2025年该城市人口总数.(参考公式:,)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

向量的点乘,【详解】,选C.【点睛】向量的点乘,需要注意后面乘的是两向量的夹角的余弦值,本题如果直接计算的话,的夹角为∠BAC的补角2、B【解析】

根据周期以及最值点和平衡位置点先分析的值,然后带入最值点计算的值.【详解】因为,,所以,则,所以,即,故;则,代入可得:且,所以.故选B.【点睛】(1)三角函数图象上,最值点和平衡位置的点之间相差奇数个四分之一周期的长度;(2)计算的值时,注意选用最值点或者非特殊位置点,不要选用平衡位置点(容易多解).3、B【解析】由题可知,直线:,设,,得,又,解得,所以双曲线方程为,故选B。4、C【解析】试题分析:由题意得,根据等比数列的性质可知,又因为,故选C.考点:等比数列的性质.5、C【解析】

根据复合函数的单调性,得到函数的减区间,即为的增区间,且,根据三角函数的图象与性质,即可求解.【详解】由题意,函数在定义域上是减函数,根据复合函数的单调性,可得函数的减区间,即的增区间,且,则,得,则函数的单调递减区间为,故选C.【点睛】本题主要考查了对数函数及三角函数的图象与性质的应用,其中解答中熟记对数函数的性质,以及三角函数的图象与性质,根据复合函数的单调性进行判定是解答的关键,着重考查了推理与运算能力,属于基础题.6、B【解析】

直接利用三角函数图象的平移变换法则,对选项中的变换逐一判断即可.【详解】函数的图象,向左平移个单位,得,错;函数的图象,向右平移个单位,得,对.函数的图象,向左平移个单位,得,错;函数的图象,向右平移个单位,得,错,故选B.【点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.7、D【解析】

根据不等式的性质,结合选项,进行逐一判断即可.【详解】因,则当时,;当时,,故A错误;因,则或,故B错误;因,才有,条件不足,故C错误;因,则,则只能是,故D正确.故选:D.【点睛】本题考查不等式的基本性质,需要对不等式的性质非常熟练,属基础题.8、D【解析】

由三角函数图像可得,,再结合三角函数图像的性质逐一判断即可得解.【详解】解:由函数的部分图象可得,,即,则,又函数图像过点,则,即,又,即,即,则对于选项A,显然错误;对于选项B,函数的图像关于直线对称,即B错误;对于选项C,函数的图像关于点对称,即C错误;对于选项D,函数的增区间为,函数的增区间为,又,,即D正确,故选:D.【点睛】本题考查了利用三角函数图像求函数解析式,重点考查了三角函数图像的性质,属中档题.9、A【解析】

根据正弦定理求得sinB,根据大边对大角的原则可求得B【详解】由正弦定理asinA∵b<a∴B<A∴B=本题正确选项:A【点睛】本题考查正弦定理解三角形,易错点是忽略大边对大角的特点,属于基础题.10、B【解析】

根据正弦定理可得和,然后对进行分类讨论,结合三角形的性质,即可得到结果.【详解】在中,因为,所以,又,所以,又当时,因为,所以时等边三角形;当时,因为,所以不存在,综上:一定是等边三角形.故选:B.【点睛】本题主要考查了正弦定理的应用,解题过程中注意两解得情况,一般需要检验,本题属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、16【解析】

根据红色球和黑色球的频率稳定值,计算红色球和黑色球的个数,从而得到白色球的个数.【详解】根据概率是频率的稳定值的意义,红色球的个数为个;黑色球的个数为个;故白色球的个数为4个.故答案为:16.【点睛】本题考查概率和频率之间的关系:概率是频率的稳定值.12、【解析】

根据极限的运算法则,合理化简、运算,即可求解.【详解】由极限的运算,可得.故答案为:【点睛】本题主要考查了极限的运算法则的应用,其中解答熟记极限的运算法则,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】

利用正弦函数的定义域求得值域,即的范围,再根据反余弦函数的定义可求得的取值范围.【详解】因为且,所以,则根据反余弦函数的定义可得,则的取值范围是.故答案为:【点睛】本题考查了正弦函数的定义域和值域,考查了反余弦函数的定义,属于基础题.14、【解析】

可采用向量加法和减法公式的线性运算进行求解【详解】由,整理得【点睛】本题考查向量的线性运算,解题关键在于将所有向量通过向量的加法和减法公式转化成基底向量,属于中档题15、【解析】

根据线性回归方程一定过样本中心点,计算这组数据的样本中心点,求出和的平均数即可求解.【详解】由题意可知,与的线性回归方程必过样本中心点,,所以线性回归方程必过.故答案为:【点睛】本题是一道线性回归方程题目,需掌握线性回归方程必过样本中心点这一特征,属于基础题.16、【解析】

由可知,算出用表示的极限,再利用性质计算得出即可.【详解】显然公比不为1,所以公比为的等比数列求和公式,且,故.此时当时,求和极限为,所以,故,所以,故,又,故.故答案为:.【点睛】本题主要考查等比数列求和公式,当时.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)两边平方可得,根据同角公式可得,;(2)根据两角和的正切公式,计算可得结果.【详解】(1)因为,所以,即.因为,所以,所以,故.(2)因为,所以,所以.【点睛】本题考查了两角同角公式,二倍角正弦公式,两角和的正切公式,属于基础题.18、(1)见解析.(2)见解析.【解析】

(1)由分别是的中点,证得,由线面平行的判定定理,可得平面,平面,再根据面面平行的判定定理,即可证得平面平面.(2)利用线面垂直的判定定理,可得平面,再利用面面垂直的判定定理,即可得到平面平面.【详解】(1)在三棱柱中,因为分别是的中点,所以,根据线面平行的判定定理,可得平面,平面又,∴平面平面.(2)在三棱柱中,平面,所以,又,,所以平面,而平面,所以平面平面.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.19、(1)见证明;(2)二面角图见解析;【解析】

(1)由菱形的性质得出,由平面,得出,再利用直线与平面垂直的判定定理证明平面,于是得出;(2)过点在平面内作,垂足为点,连接,可证出平面,于是找出二面角的平面角为,并计算出的三边边长,利用锐角三角函数计算出,即为所求答案.【详解】(1)连接,因为侧面为菱形,所以,且与相交于点.因为平面,平面,所以.又,所以平面因为平面,所以.(2)作,垂足为,连结,因为,,,所以平面,又平面,所以.所以是二面角的平面角.因为,所以为等边三角形,又,所以,所以.因为,所以.所以.在中,.【点睛】本题考查直线与直线垂直的证明,二面角的求解,在这些问题的处理中,主要找出一些垂直关系,二面角的求解一般有以下几种方法:①定义法;②三垂线法;③垂面法;④射影面积法;⑤空间向量法.在求解时,可以灵活利用这些方法去处理.20、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)由正弦定理,两角和的正弦函数公式,同角三角函数基本关系式化简已知等式可得,结合范围,可得.(Ⅱ)由已知利用三角形的面积公式可得:,进而根据余弦定理可得的值.【详解】(Ⅰ)由得:∴∴又∴,即.又,∴(Ⅱ)∵的面积为,∴∴又,∴,即【点睛】本题主要考查了正弦定理,两角和的正弦函数公式,同角三角函数基本关系式,三角形的面积公式,余弦定理在解三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论