




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省泸州市天府老窖中学三年级级数学高一下期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知曲线,如何变换可得到曲线()A.把上各点的横坐标伸长到原来的倍,再向右平移个单位长度B.把上各点的横坐标伸长到原来的倍,再向左平移个单位长度C.把上各点的横坐标缩短到原来的倍,再向右平移个单位长度D.把上各点的横坐标缩短到原来的倍,再向左平移个单位长度2.正三角形的边长为,如图,为其水平放置的直观图,则的周长为()A. B. C. D.3.已知非零向量,满足,且,则与的夹角为
A. B. C. D.4.若,,则()A. B. C. D.5.已知平面内,,,且,则的最大值等于()A.13 B.15 C.19 D.216.已知向量,,,且,则实数的值为A. B. C. D.7.如图,在中,,,若,则()A. B. C. D.8.设是△所在平面上的一点,若,则的最小值为A. B. C. D.9.《九章算术》中,将四个面均为直角三角形的三棱锥称为鳖臑,若三棱锥为鳖臑,其中平面,,三棱锥的四个顶点都在球的球面上,则该球的体积是()A. B. C. D.10.已知圆的方程为,则圆心坐标为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期为______________.12.在扇形中,如果圆心角所对弧长等于半径,那么这个圆心角的弧度数为______.13.已知一组样本数据,且,平均数,则该组数据的标准差为__________.14.函数,的值域是________.15.某公司调查了商品的广告投入费用(万元)与销售利润(万元)的统计数据,如下表:广告费用(万元)销售利润(万元)由表中的数据得线性回归方程为,则当时,销售利润的估值为___.(其中:)16.已知函数,下列结论中:函数关于对称;函数关于对称;函数在是增函数,将的图象向右平移可得到的图象.其中正确的结论序号为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列和满足:,,,,且是以q为公比的等比数列.(1)求证:;(2)若,试判断是否为等比数列,并说明理由.(3)求和:.18.已知数列的前n项和为,且,.(1)求数列的通项公式;(2)若等差数列满足,且,,成等比数列,求c.19.解答下列问题:(1)求平行于直线3x+4y-2=0,且与它的距离是1的直线方程;(2)求垂直于直线x+3y-5=0且与点P(-1,0)的距离是的直线方程.20.王某2017年12月31日向银行贷款元,银行贷款年利率为,若此贷款分十年还清(2027年12月31日还清),每年年底等额还款(每次还款金额相同),设第年末还款后此人在银行的欠款额为元.(1)设每年的还款额为元,请用表示出;(2)求每年的还款额(精确到元).21.若的最小值为.(1)求的表达式;(2)求能使的值,并求当取此值时,的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
用诱导公式把两个函数名称化为相同,然后再按三角函数图象变换的概念判断.【详解】,∴可把的图象上各点的横坐标缩短到原来的倍,再向左平移个单位长度或先向左平移个单位,再把图象上各点的横坐标缩短到原来的倍(纵坐标不变)可得的图象,故选:D.【点睛】本题考查三角函数的图象变换,解题时首先需要函数的前后名称相同,其次平移变换与周期变换的顺序不同时,平移的单位有区别.向左平移个单位所得图象的函数式为,而不是.2、C【解析】
根据斜二测画法以及正余弦定理求解各边长再求周长即可.【详解】由斜二测画法可知,,,.所以.故..故.所以的周长为.故选:C【点睛】本题主要考查了斜二测画法的性质以及余弦定理在求解三角形中线段长度的运用.属于基础题.3、B【解析】
根据题意,建立与的关系,即可得到夹角.【详解】因为,所以,则,则,所以,所以夹角为故选B.【点睛】本题主要考查向量的数量积运算,难度较小.4、B【解析】
利用诱导公式得到的值,再由同角三角函数的平方关系,结合角的范围,即可得答案.【详解】∵,又,∴.故选:B.【点睛】本题考查诱导公式、同角三角函数的平方关系,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意符号问题.5、A【解析】
令,,将,表示成,,即可将表示成,展开可得:,再利用基本不等式即可求得其最大值.【详解】令,,则又,所以当且仅当时,等号成立.故选:A【点睛】本题主要考查了平面向量基本定理的应用及利用基本不等式求最值,考查转化能力及计算能力,属于难题.6、A【解析】
求出的坐标,由得,得到关于的方程.【详解】,,因为,所以,故选A.【点睛】本题考查向量减法和数量积的坐标运算,考查运算求解能力.7、B【解析】∵∴又,∴故选B.8、C【解析】分析:利用向量的加法运算,设的中点为D,可得,利用数量积的运算性质可将原式化简为,为AD中点,从而得解.详解:由,可得.设的中点为D,即.点P是△ABC所在平面上的任意一点,为AD中点.∴.当且仅当,即点与点重合时,有最小值.故选C.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.9、A【解析】
根据三棱锥的结构特征和线面位置关系,得到中点为三棱锥的外接球的球心,求得球的半径,利用球的体积公式,即可求解.【详解】由题意,如图所示,因为,且为直角三角形,所以,又因为平面,所以,则平面,得.又由,所以中点为三棱锥的外接球的球心,则外接球的半径.所以该球的体积是.故选A.【点睛】本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)利用球的截面的性质,根据勾股定理列出方程求解球的半径.10、C【解析】试题分析:的方程变形为,圆心为考点:圆的方程二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用函数y=Atan(ωx+φ)的周期为,得出结论.【详解】函数y=3tan(3x)的最小正周期是,故答案为:.【点睛】本题主要考查函数y=Atan(ωx+φ)的周期性,利用了函数y=Atan(ωx+φ)的周期为.12、1【解析】
根据弧长公式求解【详解】因为圆心角所对弧长等于半径,所以【点睛】本题考查弧长公式,考查基本求解能力,属基础题13、11【解析】
根据题意,利用方差公式计算可得数据的方差,进而利用标准差公式可得答案.【详解】根据题意,一组样本数据,且,平均数,则其方差,则其标准差,故答案为:11.【点睛】本题主要考查平均数、方差与标准差,属于基础题.样本方差,标准差.14、【解析】
利用正切函数在单调递增,求得的值域为.【详解】因为函数在单调递增,所以,,故函数的值域为.【点睛】本题考查利用函数的单调性求值域,注意定义域、值域要写成区间的形式.15、12.2【解析】
先求出,的平均数,再由题中所给公式计算出和,进而得出线性回归方程,将代入,即可求出结果.【详解】由题中数据可得:,,所以,所以,故回归直线方程为,所以当时,【点睛】本题主要考查线性回归方程,需要考生掌握住最小二乘法求与,属于基础题型.16、【解析】
把化成的型式即可。【详解】由题意得所以对称轴为,对,当时,对称中心为,对。的增区间为,对向右平移得。错【点睛】本题考查三角函数的性质,三角函数变换,意在考查学生对三角函数的图像与性质的掌握情况。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)是等比数列,详见解析(3)答案不唯一,具体见解析【解析】
(1)由即可证明;(2)证明即可(3)由(1)可知,是以为公比的等比数列,也是以为公比的等比数列,讨论和分组求和即可【详解】(1)因为,且是以q为公比的等比数列,所以,则,所以.(2)是等比数列因为;所以,又所以是以5为首项,为公比的等比数列.(3)由(1)可知,是以为公比的等比数列,也是以为公比的等比数列,所以当时,,当时.【点睛】本题考查等比数列的证明,分组求和,考查推理计算及分类讨论思想,是中档题18、(1);(2).【解析】
(1)根据题意,数列为1为首项,4为公差的等差数列,根据等差数列通项公式计算即可;(2)由(1)可求数列的前n项和为,根据,,成等差数列及,,成等比数列,利用等差、等比数列性质可求出c.【详解】(1),,,故数列是以1为首项,4为公差的等差数列..(2)由(1)知,,,,,,法1:,,成等比数列,,即,整理得:,或.①当时,,所以(定值),满足为等差数列,②当时,,,,,不满足,故此时数列不为等差数列(舍去).法2:因为为等差数列,所以,即,解得或.①当时,满足,,成等比数列,②当时,,,,不满足,,成等比数列(舍去),综上可得.【点睛】本题考查等差数列的通项及求和,等差数列、等比数列性质的应用,解决此类问题通常借助方程思想列方程(组)求解,属于中等题.19、(1)3x+4y+3=1或3x+4y-7=1(2)3x-y+9=1或3x-y-3=1【解析】
试题分析:(1)将平行线的距离转化为点到线的距离,用点到直线的距离公式求解;(2)由相互垂直设出所求直线方程,然后由点到直线的距离求解.试题解析:解:(1)设所求直线上任意一点P(x,y),由题意可得点P到直线的距离等于1,即,∴3x+4y-2=±5,即3x+4y+3=1或3x+4y-7=1.(2)所求直线方程为,由题意可得点P到直线的距离等于,即,∴或,即3x-y+9=1或3x-y-3=1.考点:1.两条平行直线间的距离公式;2.两直线的平行与垂直关系20、(1)(2)12950元【解析】
(1)计算100000元到第二年年末的本利和,减去第一次还的元到第二年年末的本利和,再减去第二年年末还的元,可得;(2)根据100000元到第10年年末的本利和与每年还款元到第10年年末的本利和相等,得到关于的方程组,进而求得的值.【详解】(1)由题意得:.(2)因为所以,解得:.【点睛】本题以生活中的贷款问题为背景,考查利用等比数列知识解决问题,考查数学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 监理师考试考变应变战略试题及答案2025
- 学习如何开展数据库开发的敏捷实践试题及答案
- 学校课程体系管理制度
- 学校食堂品质管理制度
- 公司消防治安管理制度
- 工厂整形物料管理制度
- 公路试验检测管理制度
- 分租仓库安全管理制度
- 农药仓库使用管理制度
- 了解公路工程多种施工方法试题及答案
- 医美整形医院渠道合作协议样本
- 《术前肠道准备》课件
- RTO蓄热焚烧系统操作规程
- CONSORT2010流程图(FlowDiagram)【模板】文档
- 篮球比赛分组循环积分表
- 高中英语词汇3500词(必背)-excel版
- 人音版 音乐六年级上册 《七色光之歌》课件
- 五年级下册美术教学设计及教学反思-第14课 桥|苏少版
- 海外政策手册(2):国别研究沙特经济转型与中沙合作机遇
- 办公用品采购管理制度及流程
- 《洪水影响评价技术导则》
评论
0/150
提交评论