版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Applicationof
DesigningSaferChemicals
Chapter4第四章设计更加安全化学品的应用
4.1IsostericReplacementofCarbonwithSiliconintheDesignofSaferChemicals4.2DesigningBiodegradableChemicals
4.3DesigningAquaticallySaferChemicals4.1IsostericReplacementofCarbonwithSilicon(用硅对碳进行等电排置换)intheDesignofSaferChemicalsSilicon
isanIsostereof
CarbonDifferencesbetweenSiliconcompoundsandCarboncompounds
ThedegradationandoxidativemetabolismoforganicsiliconcompoundsExamplesofisostericreplacementofcarbonwithsilicon4.1.1SiliconisanIsostericatomofCarbon
CommonFeaturesofSiliconandCarbongroupedincolumn4AofthePeriodicTablehavingmanychemicalsimilarities:
tetravalent,tetrahedral,andformstablebondswithcarbon.金刚石碳化硅Organicderivativesinwhichcarbonisreplacedbysilicongenerallyhavenointrinsictoxicity,incontrastwiththeotherGroup4Aelementsgermanium,
tin,andlead.Fromatoxicityperspective,siliconistheonlyGroup4Aelementthatisasuitablereplacementforcarbon.Inaddition,siliconisanabundant,inexpensiveelementandonethatisavailableinavarietyofforms.organicsiliconcompoundsisquiteinstable,fortheSi-Oissostrungthatorganicsiliconcompoundsareeasilyoxidatedafterexposedinenvironment.Acetylcholine(乙酰胆碱)Urethane(尿烷)Muscarinic
Antagonistis(蝇覃碱拮抗剂)Example1ONH2NOCH3SiONH2OOOUrethanesareneutralanalogsoftheneuro-transmitteracetylcholine,andwerefoundtobeantagonists(拮抗药)ofthelatter.Interestingly,silanewasmuchlesstoxictomicethanUrethane(carbon)withidenticaldose-responsecurves,andexhibitedmusclerelaxantproperties.CarbamateSiliconsubstitutedIsostereofcarbamate
(Similarinsecticidaleffect,moredegradable,lesstoxictohumanandenvironment)
Example2Carbamateinsecticideanditssiliconanalogwerefoundtohavesimilartoxicitytothehousefly.ONHCH3OONHCH3OSiONHCH3OONHCH3OSiDoublebondstosilicon,andthree-memberedringscontainingsilicon,areunstabletoairandmoisture
Singlebondsfromsilicontoheteroatomssuchasnitrogenandoxygenarestrongbutcanhydrolyzereadily.
4.1.2DifferencesbetweenSiliconandCarbonCompounds
Thesilicon-hydrogenbondismorepolarizedthanthecarbon-hydrogenbond.Polarization:Si-H>C-HIncontrasttothecarboncase,increasingthenumberofhydrogenonasiliconincreasestheeaseofoxidation,andtheparentsilane(SiH4)ispyrophoric(发火的、生火的).
[SiH2-CH2-CH2-SiH2-CH2-SiH2-CH2]n
Polyvinylsilane:Stable
ananalogofpolyethylenethatisrichinSiH2groupshasrecentlybeenreportedtobeairstableH2C=CH2Ethylene:StableH2Si=CH2vinylsilane:unstable
[CH2CH2CH2CH2CH2CH2]nPolyethylene:Stable
Forasubtledifferenceinatomicsizeexistsforsiliconandcarbon,Importantdifferencesinchemicalreactivityalsoexist.Whensiliconisproximal(最接近的)tounsaturation,asinavinylorallyl
silane,thecompoundsarestable,butunliketheircarbonanalogstheyaresubjecttoacidcatalyzedsilicon-carbonbondcleavage
BreakingofC-SibondiseasyHereinliesapotentialavenueforthedesignofenvironmentallydegradableproducts.4.1.3ThedegradationandoxidativemetabolismoforganicsiliconcompoundAnimportantcomponentofdesigningsaferchemicalsispredictingtheirenvironmentfate,andbothabioticdegradation(非生物降解)andbiologicaloxidationcanplayarole.IsostericsubstitutionofcarbonwithsiliconinmanycasesmayenhanceabioticdegradationandbiologicaloxidationCurrentlythemajorenvironmentalsourceoforganosilaneis
siliconepolymer
(聚硅酮)(siloxanes),primarilypolymersof1,1-dimethyl
silanediol.
HODepolymerizesinthepresenceofwaterandsoiltosilicatesfinallyAbioticDegradation
Furthermorelabelingstudieshaveshownthatthe
methylgroups
canbephoto-chemicallycleavedfromthesilicon,withthefinalproductbeingthenaturallyoccurring
silicates.
BiologicalOxidationEarlystudiesofmicrobialgrowthinthepresenceofpermethyl
siloxanes(硅氧烷)
suggestedthat
biologicalcleavageofsilicon-carbonbonds
couldoccurMorerecentworkhasshownthat
microorganismscanutilizedimethy
siloxanes
asasourceofcarbon,andsoilincubationof14Clabeledsiloxaneshasbeenfoundto
release14CO2
PioneeringworkbyFessendenonthemetabolismoforganosilanesby
mammalsfoundthat
phenylandalkylsilanes
wereoxidizedverymuchlike
theircarbonanalogs.
Anotabledifference,however,was
foundfordimethyl
phenylsilane
inwhich
thesilicon-hydrogenbondwasrapidlyoxidizedinvivo
Example1:SilaneAnalogsofDDTExample2:OrganosilaneFungicides4.1.4ExamplesfortheDesignofSaferChemicalsUsingSiliconSubstitutionforCarbonSilaneAnalogsofDDTDespitetherelativesafetyofDDTtomammals,itstoxicitytootherspeciesandenvironmentalpersistenceledtotheban(被禁止)ofthisimportantpesticide.InanearlyefforttodesignamorebenignversionofDDT,anumberofsilaneanalogssuchastheDDDanalogwerepreparedwiththeanticipationthatthesewouldbelessenvironmentallypersistent.
SilaneAnalogsofDDTThepresenceofthereadilyoxidizedsilicon-hydrogenbondwouldhavebeenonesourceofinstability,bothenvironmentallyandinvivo.SilaneAnalogsofDDTOrganosilaneFungicidesAsanovelentryintotheclassoftriazole(三唑)fungicides(防真菌剂)Mebergandcoworkerspreparedaseriesofsilaneanalogs.Oneofthese,flusilazole(氟苯代硅三唑)provedtobeahighlyeffectivecropfungicide(谷类防真菌)andisnowamajorcommercialproduct.Compoundflusilazoleisaninhibitorofsterol(甾醇)biosynthesis,similartoothertriazolefungicides.Thepropertiesofthiscompoundresponsibleforitsfieldperformance,includingvolatility,solubility,andmovementwithinplants,havebeendescribed.OrganosilaneFungicidesTheprimarymetaboliteofflusilazoleisthesilanol,resultingfromcleavageofthetriazole-substitutedmethylgroupfromsilicon.
Presumablysilanolhaslittleornobiologicalactivity,andthehigheroxidationlevelsilanolwillenhancetherateofitsfurtherdegradation(relativetoflusilazole).Flusilazoleisanexcellentexampleofthecommercialpotentialforbiologicallyactiveorganosilanes.Flusilazole
(氟苯代硅三唑)MetabolismUsage:
cropfungicide
4.2DesigningBiodegradableChemicalsExamplesofDesigningBiodegradableChemicalsTheMicrobialBasisofBiodegradation
ChemicalStructureandBiodegradability
GroupContributionMethodforPredictingBiodegradability
Chemicals:(resistbiodegradation)exertpossibletoxiceffecttobiota,hardlytopredicttheirpotentialtoxiceffect(atthetimeofreleasetotheenvironment).Moreover,somebio-accumulativechemicalsseemsafeaccordingtotoxicitycriteria,buthavechronic(慢性的)orotherunforeseentoxiceffect
Microbialdegradationisthemajorlossmechanismformostorganicchemicalsinaquatic(水的)andterrestrial(陆地)environments,andisthecornerstoneofthemodernwastewatertreatmentplant.4.2.1Themicrobialbasisofbiodegradation
Thekeyroleinbiodegradation:Microorganisms(primarilybacteria细菌andfungi真菌)arebyfarthemostimportantagentsofbiodegradationinnature.Anabundanceofevidenceexiststoshowthatmicroorganismsareresponsibleforthedegradationofmanyorganicchemicalscannotbealteredsignificantlybyhigherorganism.Animals:
excretechemicalsthattheycannotmetabolize;
Plants:
tendtoconvertchemicalsintowaterinsoluble;Microorganisms:
Theeventualmineralizationoforganiccompounds(theirconversiontoinorganicsubstancessuchasCO2andwater)canbeattributedpredominantlytomicrobialdegradation.
Theprocessofbiodegradation1.Anorganiccompoundmustfirstenterthemicrobialcellthroughthecellmembrane.(Thismayoccurbypassivediffusionorwiththeassistanceofspecifictransportsystems)
Especially:foraquaticandterrestrialenvironments——lowlevelsoforganicsubstrateandothernutrients.Forlargepolymericsubstrates:proteins,polysaccharides(多糖),
biodegradatedbyextracellular(细胞外酶)enzymes,
2.Onceinsidethecell,thereactionsthatacompoundmayundergoaredeterminedbyitsmolecularstructure,hundredsoftransformationshavebeendescribedintheliterature,butalmostallcanbeclassifiedbroadlyas:
oxidative;reductive;hydrolytic;conjugativereactions
InadditionThecatabolicpathwaysemployedbymicrobialpopulationsarealsodiverseandvarywiththe
environmentalconditions.
microbialdegradation
strategyisstepwisedegradationtoyieldoneormoreintermediateproductscapableofenteringthecentralpathwaysofmetabolism.Theoverallobjectiveisalwaystoproducecarbonandenergyforgrowth.
Thestrategyofmicrobialdegradation
Naturallyoccurringorganiccompoundsaredegradableviapathwaysthatrepresentevolutionaryadaptationstoprevailingconditions.Daleyhassaid:“…itisreasonabletobelievethateverybiochemicallysynthesizedorganiccompoundisbiodegradable.”4.2.2Relationshipbetweenchemicalstructureandbio-degradabilityThebio-degradabilityofasubstance,whichisoneofthepropertiesofthesubstance,dependsstronglyonitschemicalstructure.Studies,ResearchandEnvironmentalMonitoring:
Smallchangesinmolecularstructurecanevidentlyalterachemical'ssusceptibilitytobiodegradation!Thefollowingmolecularfeaturesgenerallyincrease
resistancetoaerobicbiodegradation
Halides(卤代物);especiallychlorineandfluorine;Chainbranching(支链物质),especiallyquaternarycarbon(季碳)andtertiarynitrogen,orextremelybranchingsuchasinsurfactantsderivedfromtri-ortetrapropylene;3.Nitro,nitroso(亚硝基),azo
(偶氮基),arylamino
(芳氨基);
Polycyclicresidues(多环残基)(suchasinpolycyclicaromatichydrocarbons(多环芳香烃)orPAHS(稠环芳烃)),especiallywithmorethanthreefusedrings;Heterocyclicresidues(杂环残基);e.g.,pyridinerings(吡啶环);Aliphaticether(C-O-C)bonds(脂肪族醚键);High-substitutedcompoundismoredifficulttodegradethanlow-substitutedone.
Forthemostpart,thefeatureslistedaboveaffecttheabilityofthecompoundtoserveasaninducerorsubstrate,orboth,ofdegradativeenzymesandcellulartransportsystems.
Thechemicalstructureswhichfavorbiodegradabilitybythepresenceofpotentialsitesofenzymatichydrolysis(e.g.,esters酯,amines胺);bytheintroductionofoxygenintheformofhydroxyl(羟基),aldehydic(醛基)orcarboxylic(羧基)acidgroups;bythepresenceofun-substitutedlinearalkylchains(especially>4carbons)andphenylrings,whichrepresentpossiblesitesforattackbyoxygenases.Lower-substitutedcompoundsThefirststepofbiodegradationissomekindofoxidationreaction.Thesecondfactorisparticularlyimportantbecausethefirststepinthebiodegradationofmanycompounds(e.g.,hydrocarbons)istheenzymaticinsertionofoxygenintothestructure,Andthisstepisalmostalwaysratelimiting.
TheimportanceofinsertingoxygeninthemoleculeMoregenerally,ifthefirstbiodegradativestepissomeformofoxidation,itseemslogicaltoexpectthatbiodegrabilitywillbeenhancedifthesyntheticchemisthasalreadycarriedit(oxygeninserted)outduringmoleculardesign.Thesolubilityandbio-degradabilityThenumberofsubstitutedgroupsattachedtothemainstructureofthemoleculeandtheaqueoussolubilityofthemoleculesaltersignificantlythebiodegradability.
Thepossibleeffectsofsolubilityonbiodegradabilityareasthefollowing:1:Microbialbioavailability(微生物生物利用度)Insolublechemicalstendtopartitiontotheadsorbedstateinactivatedsludge,sedimentsandsoil.Moststudieshaveshownthatthistendstoreducetherateofbiodegradation2:Rateofsolubilization(溶解速度)Moststudieshaveshownthatforsolidwithverylowsolubility,onlythedissolvedordispersedphaseisavailabletomicroorganisms.Therefore,therateofdissolutionofasolidinwatermaycontroltherateofbiodegradation.Manymicroorganismsexcretebiosurfactants(e.g.,rhamnolipids,鼠李糖脂)thatenhancetherateofsolubilizition.
3:LowaqueousconcentrationSomestudieshaveshownthatforchemicalssolubletotheextentofonlyafewmicrogramsperliterorless,thisconcentrationmaybetoolowforoptimalfunction(无法发挥其最佳功能)ofcellularenzymes(细胞酶)ortransportsystems(传输系统).Thusthebiodegradabilityislimited.4.2.3ExamplesofdesigningbiologicallysaferchemicalsExample1Linearalkylbenzenesulfonate(直链烷基苯磺酸,LAS)AsmanufacturedTPBSisactuallyacomplexmixturebutatypicalstructureiscontinueWhatwillhappenwithhighlybranchedhydrocarbons???EnvironmentalproblemTPBSwerefoundtobeincompletelybiodegradedinmunicipalsewagetreatmentsystems(城市污水处理系统).[TPBS]wasdegradedbyonlyabout50%insewagetreatmentunitsandasaresultexcessivefoamingoccurredinactivatedsludgeaeration(通风)tanks,aswellasinreceivingrivers.
UsinglinearAlkylbenzene
Sulfonates(LAS)toreplaceTPBS:thestructureEventuallymethodsweredevelopedthatpermittedtheeconomicalmanufactureofamoreenvironmentallyacceptableproductLAS,LASsurfactantscouldbecompletelydegradedinmunicipalsewagetreatmentsystemsmorethan50yearsago,Domagkfoundthatthetoxicityofsimplequaternaryammoniumcompounds(QACS)weregreatlyenhancedbythepresenceofalongalkylgroup(长链烷基).Example2
DialkylQuaternaries(二烷基季铵盐)DialkylQuaternariesAccordingtoCross,66%ofthemarketforQACsisdominatedbythreeclasses,allofwhicharedialkylquaternaries,meaningthathydrophobicity(疏水性)isimpartedtothemoleculebytwolinearalkylchainsintheC9toC17range.1)di-alkyldimethylammoniumsalts(二烷基二甲铵盐)continue2)imidazoliumquaternaryammoniumsalts(咪唑季铵盐)
continue3)ethoxylated
ethan
aminiumquaternaryunmoniumsalts(羟乙基乙铵鎓季铵盐)
UntilrecentlythefabricsoftenermarketwasdominatedbyaQACofthefirsttype,dihydrogenatedtallow(动物脂)dimethylammoniumchloride(DHTDMAC二氢化动物脂二甲基氯化铵)ThelongalkylgroupsinDHTDMACarederivedfrompurifiedanimalfat(tallow),andconsistofamixturechieflyintheC16-C18(tallowfattyacids)range.ThetrueaqueoussolubilityofDHTDMACisexceedinglylow,andthechemicalsorbsstronglytosolidsinwastewatertreatmentandtheenvironment.Removalintreatmentisthereforehigh(>95%),unlikeTPBS,butdoesnotnecessarilyconespondtoultimatebiodegradation.Example3Alkylphenol
Ethoxylates
(烷基酚乙氧基化物)
Alkylphenolethoxylates(APEs),areoneoftwomajorclassesofnonionicsurfactants(非离型表面活性剂).AgoodexampleofNPEuseinindustryisinprinting.
APEusesaremainlyindustrialandcoverawiderange,includingapplicationsintextileprocessing(织物加工),emulsionpolymerization,printing,metalcleaning,oilwelldrillingandpapermaking.
Unlikelinearalcoholethoxylates(乙氧基化物,theothermajorclassofnonionicsurfactants),APEsaremostlybranched.
TheenvironmentalrisksassociatedwithAPEsandespeciallyNPEareacomplexandcontentiousissue.continueDebate
Mostattentionhasfocusedonthemono-anddiethoxylated
nonylphenoladductsNP1EO(n=1)andNP2EO(n=2),whichhavebeenreportedtoberelativelystableintermediatesinNPEbiodegradation.NP1E0,NP2E0andnonylphenol(壬基酚)itselfarehighlytoxictoaquaticorganisms,whereastheparentNPEs(thenumberofethoxylategroupsmaybeashighas30-50,but12-14ismoretypical)aremuchlesstoxic.Recentlyaddedtothisisanewcontroversy,asnonylphenol,NP2EOandrelatedcompoundshavebeenreportedtobeestrogenic(雌性激素的)infish.APE%Biodegradation
LinearBranchedC8AEE97146C8APE9:containing9oxy-ethylgroup5149C9APE96525C9APE9:containing9oxy-ethylgroup6530885557336632750621060180~5008975
Table4-1DegradationofAPE4.3Designingaquaticallysafechemicals氧气、碳氢化合物光合作用哺乳动物、鸟和人绿藻微生物水生生物食物链ToxiceffectsofchemicalstoaquaticspeciesChemicalsthataretoxictoaquaticspeciesmaythereforeputanecosystematunreasonableriskofharm,andcanleadtodisruptionofsomefoodchains.Thesurvivalofterrestrialspecies(陆生生物),includinghumans,isatleastpartiallydependentuponaquaticorganisms.Therearetwogeneraltypesofchemical-inducedlethality(致命性)inaquaticorganisms:non-specific(i.e.,narcosis麻醉性的),andspecific.
Themajorityofchemicalsthataretoxictoaquaticspeciesaretoxicbynarcosis.Non-specificornarcosistoxicityThemechanisticbasisofnarcosistoxicityistheabilityofachemicaltodiffuseacrossthebiologicalmembranesofanaquaticorganism.Onceahighenoughconcentrationisreachedwithinthecellsorincellularmembranes,itcanleadtodeath.
Becausecellularmembraneshaveahigherlipid(脂类)content,theyarereadilypenetratedbynon-polar,lipid-solublechemicals.Chemicalswithonlyanarcoticmodeoftoxicactionrepresentavarietyofchemicalclassesincludingchlorinatedhydrocarbons,alcohols,ethers,ketones,weakorganicacidsandbases,andsimplearomaticnitro-compounds,tonamejustafew.
specificorreactivetoxicity
Incontrasttochemicalsthatareonlytoxicbynarcosis,somechemicalsaretoxictoaquaticorganismsasaresultofachemicalreactionbetweenthechemical(oritsmetabolite)withacriticalcellularmacromolecule.Thechemicalsexhibitexcesstoxicitytothatofnarcosisandistermedspecificorreactivetoxicity.
Forexample,excesstoxicitycanbeexpectedtoresultifachemical(oritsmetabolite)cancovalentlybondtocriticalproteinmolecules(e.g.,enzymes,DNA).Examplesofthetypesofchemicalsarecyanogens(腈),electrophiles.UseofStructure-ActivityRelationshipstoPredictAquaticToxicityModificationofPhysicochemicalPropertiesandStructureModificationofChemicalStructure4.3.1Useofstructure-activityrelationshipstopredictaquatictoxicityInordertoidentifyrisksposedbynewchemicalsforwhichnodataareavailable,andtodosounderthestricttimeconstraintsprescribedbyTSCA,theEPA(环境保护署)basesmanyofitstoxicityassessmentsonstructure-activityrelationships(SARs).WhatisSARs???SARsrefertotheabilityofagroupofanalogouschemicalstoproduceaparticularbiologicaleffect,andtheinfluencethatthestructuraldifferencesbetweenthechemicalshaveonrelativepotencyinproducingthebiologicaleffect.
IntheQSAR(quantitativestructure-activityrelationships)ofaquatictoxicity,somephysicalpropertiesareoftenusedasoctanol-waterpartitioncoefficient(辛醇—水分配系数logP),
water-solubility(水溶性),dissociationconstant(解离常数pKa),
molecularweight(分子量),PercentAmineNitrogen(胺氮百分数),etal.(1)Octanol-WaterPartitionCoefficient
(logP或logKo-w)
Theoctanol-waterPartitionCoefficientisatermusedtoexpressasubstance‘slipophilicity(油溶性).Itisthephysicalchemistrypropertymostfrequentlyusedtoestimatetheaquatictoxicityoforganicchemicals.BecauselogPoftencorrelateswellwithbiologicalactivity.
4.3.2AdjustingthePhysicalChemicalProperties
Forchemicalswhoseaquatictoxicityisduetonarcosistoxicity
Chemistscanreducethepotentialforaquatictoxicitybydesigningchemicalsasbelow:
logP≤2,molecularweight≤200daltons
logP≥8,regardlessofmolecularweight.
TodecreaselogP,polarsubstationssuchascarboxylic,alcoholic,orotherwatersolublegroupscanbeaddedtochemicals.Ontheotherhand,logPcanbeincreasedbyaddinghydrophobicgroupssuchashalogens,phenylrings,andalkylgroups.
(2)WaterSolubility
Asageneralrule,chemicalshavingwatersolubilitylessthan1ppbareessentiallynon-toxictoaquaticspeciesduetolowbioavailability.
Ontheotherhand,chemicalshavinggoodwatersolubilityarenontoxictoaquaticspecies.However,thereisnotaupperlimit.CH3CH2C(OH)(CH3)2
CH3CH2CH2CH2CH2OH
a+98g/L
ag/L
continue(3)MolecularSizeandWeightIfthenewchemical'smolecularweightisincreased,thechemicalwillbelesstoxictoaquaticorganismswhileholdingallotherfactorsconstant.Atamolecularweightof1000Daltons,uptakewillbenegligiblebecausethechemicalwillnotdiffuseacrosstherespiratorymembranesofaquaticorganisms.Chemicalswithminimumcross-sectiondiametersgreaterthan1nmaretoolargeforpassivediffusionanduptakethroughtherespiratorymembranesofaquaticorganisms.
Neutralphthalocyaninedyes(天然酞菁染料)minimumcross-sectionaldiameters>1nm.lowacuteandchronictoxicitytoaquaticorganismsTheDesignPrinciple*toincreaseminimumcross-sectionaldiameters*toincreasethemoleculeweight(4)IonPairSomechemicalsaltsexistasstrongionpairswhenanionanditscounterionareassociatedstronglywithoneanother.Thesechemicalsdissociateweaklyornotatallinwater.Consequently,mayhavelowwatersolubilitiesandlowaquatictoxicity
Ifasolubleandchargedchemicalcanbeconvertedtoastrongionpairandstillretainitsusefulnessinauseapplication,thentheresultingsubstancewillbelesstoxictoaquaticorganisms.Ifthepesticidescouldbeformulatedwiththecationicsurfactant:anionicsurfactantstrongionpair(assuminga1:1ratio),thenthetoxicityofthesurfactant(s),couldbereducedmorethan100-fold.(5)Zwitterions(两性离子)ZwitterionsaresubstancesthatcontainpositivelyandnegativelychargedgroupsZwitterionsgenerallyhavelowtoxicitytoaquaticorganisms,providedthatthesubstancehasbalancedchargesanddoesnothavesurfactantproperties.酸性蓝1号
(6)ChelationSubstancesthatcanchelatepolyvalentmetalsareoftentoxictoalgae(海藻)insoftwatersituationsbecausetheydeprivethealgaeofessentialnutrientelements,e.g.,Ca2+,Mg2+,orFe2+.Therefore,algaltoxicitycanbereducedifachelatorisboundwithapolyvalentmetalbeforeexposuretoalgaetakesplaceorifthechemicalisreleasedtosurfacewaterswhichhavemoderatetohighhardness.4.3.3MolecularModification1、NarcosisandExcessToxicityExamplesofchemicalsthataretoxicbyspecificmechanismsinclude:electrophiles(亲电性物质)suchasepoxides,alkylhalides,acrylates,andaldehydescertainesters;dinitrobenzenes;andthiols,tonameafew.Theelectrophilicchemicalsmaycombinecovalentlywithnucleophiles(亲核性物质)locatedinreceptorsofintracellularmacro-molecules.Thisbondingresultsinacellularchangethatisdifficulttoreverse,andresultinirreversibletoxicity.
ExcessToxicity
TheaquatictoxicityofachemicalthatistoxicfromaspecificmechanismisusuallyconsiderablygreaterthanthatpredictedforthesubstanceusingaQSARequationdevelopedforchemicals
thataretoxicbynarcosis.ExcessToxicity=TAT-TAP
2.Thetoxicityofchemicalscanbedecreased
bymodification
Thetoxicityofchemicalsthataretoxicbyaspecificmechanismcanbedecreasedbymakingstructuralmodificationsthatstericallyhinderthemsuchthattheycannolongerreachoractwiththeirtargetsites(i.e.,reducingtheirtoxicitytoonlynarcosis).Forexample,ie
stericallyhinderedcyclicaliphaticamineis2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省厦门市英才学校2026届生物高一下期末联考模拟试题含解析
- 2026届广东省佛山市南海区高一数学第二学期期末预测试题含解析
- 2026届甘肃省庆阳市镇原县镇原中学高一下数学期末质量检测试题含解析
- 2025年日照小学直播教师笔试真题及答案
- 2025年阿拉尔事业编考试真题及答案
- 2025年港城市场营销面试题库及答案
- 2025年伊春嘉荫县事业单位考试及答案
- 2025年淄矿集团定向生笔试及答案
- 2025年泸溪县招教考试备考题库带答案解析(夺冠)
- 2024年理塘县招教考试备考题库附答案解析
- 学校中层管理岗位职责及分工明细(2026年版)
- 莆田春节习俗介绍
- 江苏省南京市2025届中考化学试卷(含答案)
- 飞行固模课件
- 2025年中考英语真题完全解读(重庆卷)
- 学前教育创意短片
- 2026年短视频合作合同
- 建筑临时设施设计方案
- 污水厂春节复工安全培训课件
- 电场防寒防冻知识培训课件
- 审贷分离管理办法
评论
0/150
提交评论