绿色化学:第四章 设计更加安全化学品的应用_第1页
绿色化学:第四章 设计更加安全化学品的应用_第2页
绿色化学:第四章 设计更加安全化学品的应用_第3页
绿色化学:第四章 设计更加安全化学品的应用_第4页
绿色化学:第四章 设计更加安全化学品的应用_第5页
已阅读5页,还剩106页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Applicationof

DesigningSaferChemicals

Chapter4第四章设计更加安全化学品的应用

4.1IsostericReplacementofCarbonwithSiliconintheDesignofSaferChemicals4.2DesigningBiodegradableChemicals

4.3DesigningAquaticallySaferChemicals4.1IsostericReplacementofCarbonwithSilicon(用硅对碳进行等电排置换)intheDesignofSaferChemicalsSilicon

isanIsostereof

CarbonDifferencesbetweenSiliconcompoundsandCarboncompounds

ThedegradationandoxidativemetabolismoforganicsiliconcompoundsExamplesofisostericreplacementofcarbonwithsilicon4.1.1SiliconisanIsostericatomofCarbon

CommonFeaturesofSiliconandCarbongroupedincolumn4AofthePeriodicTablehavingmanychemicalsimilarities:

tetravalent,tetrahedral,andformstablebondswithcarbon.金刚石碳化硅Organicderivativesinwhichcarbonisreplacedbysilicongenerallyhavenointrinsictoxicity,incontrastwiththeotherGroup4Aelementsgermanium,

tin,andlead.Fromatoxicityperspective,siliconistheonlyGroup4Aelementthatisasuitablereplacementforcarbon.Inaddition,siliconisanabundant,inexpensiveelementandonethatisavailableinavarietyofforms.organicsiliconcompoundsisquiteinstable,fortheSi-Oissostrungthatorganicsiliconcompoundsareeasilyoxidatedafterexposedinenvironment.Acetylcholine(乙酰胆碱)Urethane(尿烷)Muscarinic

Antagonistis(蝇覃碱拮抗剂)Example1ONH2NOCH3SiONH2OOOUrethanesareneutralanalogsoftheneuro-transmitteracetylcholine,andwerefoundtobeantagonists(拮抗药)ofthelatter.Interestingly,silanewasmuchlesstoxictomicethanUrethane(carbon)withidenticaldose-responsecurves,andexhibitedmusclerelaxantproperties.CarbamateSiliconsubstitutedIsostereofcarbamate

(Similarinsecticidaleffect,moredegradable,lesstoxictohumanandenvironment)

Example2Carbamateinsecticideanditssiliconanalogwerefoundtohavesimilartoxicitytothehousefly.ONHCH3OONHCH3OSiONHCH3OONHCH3OSiDoublebondstosilicon,andthree-memberedringscontainingsilicon,areunstabletoairandmoisture

Singlebondsfromsilicontoheteroatomssuchasnitrogenandoxygenarestrongbutcanhydrolyzereadily.

4.1.2DifferencesbetweenSiliconandCarbonCompounds

Thesilicon-hydrogenbondismorepolarizedthanthecarbon-hydrogenbond.Polarization:Si-H>C-HIncontrasttothecarboncase,increasingthenumberofhydrogenonasiliconincreasestheeaseofoxidation,andtheparentsilane(SiH4)ispyrophoric(发火的、生火的).

[SiH2-CH2-CH2-SiH2-CH2-SiH2-CH2]n

Polyvinylsilane:Stable

ananalogofpolyethylenethatisrichinSiH2groupshasrecentlybeenreportedtobeairstableH2C=CH2Ethylene:StableH2Si=CH2vinylsilane:unstable

[CH2CH2CH2CH2CH2CH2]nPolyethylene:Stable

Forasubtledifferenceinatomicsizeexistsforsiliconandcarbon,Importantdifferencesinchemicalreactivityalsoexist.Whensiliconisproximal(最接近的)tounsaturation,asinavinylorallyl

silane,thecompoundsarestable,butunliketheircarbonanalogstheyaresubjecttoacidcatalyzedsilicon-carbonbondcleavage

BreakingofC-SibondiseasyHereinliesapotentialavenueforthedesignofenvironmentallydegradableproducts.4.1.3ThedegradationandoxidativemetabolismoforganicsiliconcompoundAnimportantcomponentofdesigningsaferchemicalsispredictingtheirenvironmentfate,andbothabioticdegradation(非生物降解)andbiologicaloxidationcanplayarole.IsostericsubstitutionofcarbonwithsiliconinmanycasesmayenhanceabioticdegradationandbiologicaloxidationCurrentlythemajorenvironmentalsourceoforganosilaneis

siliconepolymer

(聚硅酮)(siloxanes),primarilypolymersof1,1-dimethyl

silanediol.

HODepolymerizesinthepresenceofwaterandsoiltosilicatesfinallyAbioticDegradation

Furthermorelabelingstudieshaveshownthatthe

methylgroups

canbephoto-chemicallycleavedfromthesilicon,withthefinalproductbeingthenaturallyoccurring

silicates.

BiologicalOxidationEarlystudiesofmicrobialgrowthinthepresenceofpermethyl

siloxanes(硅氧烷)

suggestedthat

biologicalcleavageofsilicon-carbonbonds

couldoccurMorerecentworkhasshownthat

microorganismscanutilizedimethy

siloxanes

asasourceofcarbon,andsoilincubationof14Clabeledsiloxaneshasbeenfoundto

release14CO2

PioneeringworkbyFessendenonthemetabolismoforganosilanesby

mammalsfoundthat

phenylandalkylsilanes

wereoxidizedverymuchlike

theircarbonanalogs.

Anotabledifference,however,was

foundfordimethyl

phenylsilane

inwhich

thesilicon-hydrogenbondwasrapidlyoxidizedinvivo

Example1:SilaneAnalogsofDDTExample2:OrganosilaneFungicides4.1.4ExamplesfortheDesignofSaferChemicalsUsingSiliconSubstitutionforCarbonSilaneAnalogsofDDTDespitetherelativesafetyofDDTtomammals,itstoxicitytootherspeciesandenvironmentalpersistenceledtotheban(被禁止)ofthisimportantpesticide.InanearlyefforttodesignamorebenignversionofDDT,anumberofsilaneanalogssuchastheDDDanalogwerepreparedwiththeanticipationthatthesewouldbelessenvironmentallypersistent.

SilaneAnalogsofDDTThepresenceofthereadilyoxidizedsilicon-hydrogenbondwouldhavebeenonesourceofinstability,bothenvironmentallyandinvivo.SilaneAnalogsofDDTOrganosilaneFungicidesAsanovelentryintotheclassoftriazole(三唑)fungicides(防真菌剂)Mebergandcoworkerspreparedaseriesofsilaneanalogs.Oneofthese,flusilazole(氟苯代硅三唑)provedtobeahighlyeffectivecropfungicide(谷类防真菌)andisnowamajorcommercialproduct.Compoundflusilazoleisaninhibitorofsterol(甾醇)biosynthesis,similartoothertriazolefungicides.Thepropertiesofthiscompoundresponsibleforitsfieldperformance,includingvolatility,solubility,andmovementwithinplants,havebeendescribed.OrganosilaneFungicidesTheprimarymetaboliteofflusilazoleisthesilanol,resultingfromcleavageofthetriazole-substitutedmethylgroupfromsilicon.

Presumablysilanolhaslittleornobiologicalactivity,andthehigheroxidationlevelsilanolwillenhancetherateofitsfurtherdegradation(relativetoflusilazole).Flusilazoleisanexcellentexampleofthecommercialpotentialforbiologicallyactiveorganosilanes.Flusilazole

(氟苯代硅三唑)MetabolismUsage:

cropfungicide

4.2DesigningBiodegradableChemicalsExamplesofDesigningBiodegradableChemicalsTheMicrobialBasisofBiodegradation

ChemicalStructureandBiodegradability

GroupContributionMethodforPredictingBiodegradability

Chemicals:(resistbiodegradation)exertpossibletoxiceffecttobiota,hardlytopredicttheirpotentialtoxiceffect(atthetimeofreleasetotheenvironment).Moreover,somebio-accumulativechemicalsseemsafeaccordingtotoxicitycriteria,buthavechronic(慢性的)orotherunforeseentoxiceffect

Microbialdegradationisthemajorlossmechanismformostorganicchemicalsinaquatic(水的)andterrestrial(陆地)environments,andisthecornerstoneofthemodernwastewatertreatmentplant.4.2.1Themicrobialbasisofbiodegradation

Thekeyroleinbiodegradation:Microorganisms(primarilybacteria细菌andfungi真菌)arebyfarthemostimportantagentsofbiodegradationinnature.Anabundanceofevidenceexiststoshowthatmicroorganismsareresponsibleforthedegradationofmanyorganicchemicalscannotbealteredsignificantlybyhigherorganism.Animals:

excretechemicalsthattheycannotmetabolize;

Plants:

tendtoconvertchemicalsintowaterinsoluble;Microorganisms:

Theeventualmineralizationoforganiccompounds(theirconversiontoinorganicsubstancessuchasCO2andwater)canbeattributedpredominantlytomicrobialdegradation.

Theprocessofbiodegradation1.Anorganiccompoundmustfirstenterthemicrobialcellthroughthecellmembrane.(Thismayoccurbypassivediffusionorwiththeassistanceofspecifictransportsystems)

Especially:foraquaticandterrestrialenvironments——lowlevelsoforganicsubstrateandothernutrients.Forlargepolymericsubstrates:proteins,polysaccharides(多糖),

biodegradatedbyextracellular(细胞外酶)enzymes,

2.Onceinsidethecell,thereactionsthatacompoundmayundergoaredeterminedbyitsmolecularstructure,hundredsoftransformationshavebeendescribedintheliterature,butalmostallcanbeclassifiedbroadlyas:

oxidative;reductive;hydrolytic;conjugativereactions

InadditionThecatabolicpathwaysemployedbymicrobialpopulationsarealsodiverseandvarywiththe

environmentalconditions.

microbialdegradation

strategyisstepwisedegradationtoyieldoneormoreintermediateproductscapableofenteringthecentralpathwaysofmetabolism.Theoverallobjectiveisalwaystoproducecarbonandenergyforgrowth.

Thestrategyofmicrobialdegradation

Naturallyoccurringorganiccompoundsaredegradableviapathwaysthatrepresentevolutionaryadaptationstoprevailingconditions.Daleyhassaid:“…itisreasonabletobelievethateverybiochemicallysynthesizedorganiccompoundisbiodegradable.”4.2.2Relationshipbetweenchemicalstructureandbio-degradabilityThebio-degradabilityofasubstance,whichisoneofthepropertiesofthesubstance,dependsstronglyonitschemicalstructure.Studies,ResearchandEnvironmentalMonitoring:

Smallchangesinmolecularstructurecanevidentlyalterachemical'ssusceptibilitytobiodegradation!Thefollowingmolecularfeaturesgenerallyincrease

resistancetoaerobicbiodegradation

Halides(卤代物);especiallychlorineandfluorine;Chainbranching(支链物质),especiallyquaternarycarbon(季碳)andtertiarynitrogen,orextremelybranchingsuchasinsurfactantsderivedfromtri-ortetrapropylene;3.Nitro,nitroso(亚硝基),azo

(偶氮基),arylamino

(芳氨基);

Polycyclicresidues(多环残基)(suchasinpolycyclicaromatichydrocarbons(多环芳香烃)orPAHS(稠环芳烃)),especiallywithmorethanthreefusedrings;Heterocyclicresidues(杂环残基);e.g.,pyridinerings(吡啶环);Aliphaticether(C-O-C)bonds(脂肪族醚键);High-substitutedcompoundismoredifficulttodegradethanlow-substitutedone.

Forthemostpart,thefeatureslistedaboveaffecttheabilityofthecompoundtoserveasaninducerorsubstrate,orboth,ofdegradativeenzymesandcellulartransportsystems.

Thechemicalstructureswhichfavorbiodegradabilitybythepresenceofpotentialsitesofenzymatichydrolysis(e.g.,esters酯,amines胺);bytheintroductionofoxygenintheformofhydroxyl(羟基),aldehydic(醛基)orcarboxylic(羧基)acidgroups;bythepresenceofun-substitutedlinearalkylchains(especially>4carbons)andphenylrings,whichrepresentpossiblesitesforattackbyoxygenases.Lower-substitutedcompoundsThefirststepofbiodegradationissomekindofoxidationreaction.Thesecondfactorisparticularlyimportantbecausethefirststepinthebiodegradationofmanycompounds(e.g.,hydrocarbons)istheenzymaticinsertionofoxygenintothestructure,Andthisstepisalmostalwaysratelimiting.

TheimportanceofinsertingoxygeninthemoleculeMoregenerally,ifthefirstbiodegradativestepissomeformofoxidation,itseemslogicaltoexpectthatbiodegrabilitywillbeenhancedifthesyntheticchemisthasalreadycarriedit(oxygeninserted)outduringmoleculardesign.Thesolubilityandbio-degradabilityThenumberofsubstitutedgroupsattachedtothemainstructureofthemoleculeandtheaqueoussolubilityofthemoleculesaltersignificantlythebiodegradability.

Thepossibleeffectsofsolubilityonbiodegradabilityareasthefollowing:1:Microbialbioavailability(微生物生物利用度)Insolublechemicalstendtopartitiontotheadsorbedstateinactivatedsludge,sedimentsandsoil.Moststudieshaveshownthatthistendstoreducetherateofbiodegradation2:Rateofsolubilization(溶解速度)Moststudieshaveshownthatforsolidwithverylowsolubility,onlythedissolvedordispersedphaseisavailabletomicroorganisms.Therefore,therateofdissolutionofasolidinwatermaycontroltherateofbiodegradation.Manymicroorganismsexcretebiosurfactants(e.g.,rhamnolipids,鼠李糖脂)thatenhancetherateofsolubilizition.

3:LowaqueousconcentrationSomestudieshaveshownthatforchemicalssolubletotheextentofonlyafewmicrogramsperliterorless,thisconcentrationmaybetoolowforoptimalfunction(无法发挥其最佳功能)ofcellularenzymes(细胞酶)ortransportsystems(传输系统).Thusthebiodegradabilityislimited.4.2.3ExamplesofdesigningbiologicallysaferchemicalsExample1Linearalkylbenzenesulfonate(直链烷基苯磺酸,LAS)AsmanufacturedTPBSisactuallyacomplexmixturebutatypicalstructureiscontinueWhatwillhappenwithhighlybranchedhydrocarbons???EnvironmentalproblemTPBSwerefoundtobeincompletelybiodegradedinmunicipalsewagetreatmentsystems(城市污水处理系统).[TPBS]wasdegradedbyonlyabout50%insewagetreatmentunitsandasaresultexcessivefoamingoccurredinactivatedsludgeaeration(通风)tanks,aswellasinreceivingrivers.

UsinglinearAlkylbenzene

Sulfonates(LAS)toreplaceTPBS:thestructureEventuallymethodsweredevelopedthatpermittedtheeconomicalmanufactureofamoreenvironmentallyacceptableproductLAS,LASsurfactantscouldbecompletelydegradedinmunicipalsewagetreatmentsystemsmorethan50yearsago,Domagkfoundthatthetoxicityofsimplequaternaryammoniumcompounds(QACS)weregreatlyenhancedbythepresenceofalongalkylgroup(长链烷基).Example2

DialkylQuaternaries(二烷基季铵盐)DialkylQuaternariesAccordingtoCross,66%ofthemarketforQACsisdominatedbythreeclasses,allofwhicharedialkylquaternaries,meaningthathydrophobicity(疏水性)isimpartedtothemoleculebytwolinearalkylchainsintheC9toC17range.1)di-alkyldimethylammoniumsalts(二烷基二甲铵盐)continue2)imidazoliumquaternaryammoniumsalts(咪唑季铵盐)

continue3)ethoxylated

ethan

aminiumquaternaryunmoniumsalts(羟乙基乙铵鎓季铵盐)

UntilrecentlythefabricsoftenermarketwasdominatedbyaQACofthefirsttype,dihydrogenatedtallow(动物脂)dimethylammoniumchloride(DHTDMAC二氢化动物脂二甲基氯化铵)ThelongalkylgroupsinDHTDMACarederivedfrompurifiedanimalfat(tallow),andconsistofamixturechieflyintheC16-C18(tallowfattyacids)range.ThetrueaqueoussolubilityofDHTDMACisexceedinglylow,andthechemicalsorbsstronglytosolidsinwastewatertreatmentandtheenvironment.Removalintreatmentisthereforehigh(>95%),unlikeTPBS,butdoesnotnecessarilyconespondtoultimatebiodegradation.Example3Alkylphenol

Ethoxylates

(烷基酚乙氧基化物)

Alkylphenolethoxylates(APEs),areoneoftwomajorclassesofnonionicsurfactants(非离型表面活性剂).AgoodexampleofNPEuseinindustryisinprinting.

APEusesaremainlyindustrialandcoverawiderange,includingapplicationsintextileprocessing(织物加工),emulsionpolymerization,printing,metalcleaning,oilwelldrillingandpapermaking.

Unlikelinearalcoholethoxylates(乙氧基化物,theothermajorclassofnonionicsurfactants),APEsaremostlybranched.

TheenvironmentalrisksassociatedwithAPEsandespeciallyNPEareacomplexandcontentiousissue.continueDebate

Mostattentionhasfocusedonthemono-anddiethoxylated

nonylphenoladductsNP1EO(n=1)andNP2EO(n=2),whichhavebeenreportedtoberelativelystableintermediatesinNPEbiodegradation.NP1E0,NP2E0andnonylphenol(壬基酚)itselfarehighlytoxictoaquaticorganisms,whereastheparentNPEs(thenumberofethoxylategroupsmaybeashighas30-50,but12-14ismoretypical)aremuchlesstoxic.Recentlyaddedtothisisanewcontroversy,asnonylphenol,NP2EOandrelatedcompoundshavebeenreportedtobeestrogenic(雌性激素的)infish.APE%Biodegradation

LinearBranchedC8AEE97146C8APE9:containing9oxy-ethylgroup5149C9APE96525C9APE9:containing9oxy-ethylgroup6530885557336632750621060180~5008975

Table4-1DegradationofAPE4.3Designingaquaticallysafechemicals氧气、碳氢化合物光合作用哺乳动物、鸟和人绿藻微生物水生生物食物链ToxiceffectsofchemicalstoaquaticspeciesChemicalsthataretoxictoaquaticspeciesmaythereforeputanecosystematunreasonableriskofharm,andcanleadtodisruptionofsomefoodchains.Thesurvivalofterrestrialspecies(陆生生物),includinghumans,isatleastpartiallydependentuponaquaticorganisms.Therearetwogeneraltypesofchemical-inducedlethality(致命性)inaquaticorganisms:non-specific(i.e.,narcosis麻醉性的),andspecific.

Themajorityofchemicalsthataretoxictoaquaticspeciesaretoxicbynarcosis.Non-specificornarcosistoxicityThemechanisticbasisofnarcosistoxicityistheabilityofachemicaltodiffuseacrossthebiologicalmembranesofanaquaticorganism.Onceahighenoughconcentrationisreachedwithinthecellsorincellularmembranes,itcanleadtodeath.

Becausecellularmembraneshaveahigherlipid(脂类)content,theyarereadilypenetratedbynon-polar,lipid-solublechemicals.Chemicalswithonlyanarcoticmodeoftoxicactionrepresentavarietyofchemicalclassesincludingchlorinatedhydrocarbons,alcohols,ethers,ketones,weakorganicacidsandbases,andsimplearomaticnitro-compounds,tonamejustafew.

specificorreactivetoxicity

Incontrasttochemicalsthatareonlytoxicbynarcosis,somechemicalsaretoxictoaquaticorganismsasaresultofachemicalreactionbetweenthechemical(oritsmetabolite)withacriticalcellularmacromolecule.Thechemicalsexhibitexcesstoxicitytothatofnarcosisandistermedspecificorreactivetoxicity.

Forexample,excesstoxicitycanbeexpectedtoresultifachemical(oritsmetabolite)cancovalentlybondtocriticalproteinmolecules(e.g.,enzymes,DNA).Examplesofthetypesofchemicalsarecyanogens(腈),electrophiles.UseofStructure-ActivityRelationshipstoPredictAquaticToxicityModificationofPhysicochemicalPropertiesandStructureModificationofChemicalStructure4.3.1Useofstructure-activityrelationshipstopredictaquatictoxicityInordertoidentifyrisksposedbynewchemicalsforwhichnodataareavailable,andtodosounderthestricttimeconstraintsprescribedbyTSCA,theEPA(环境保护署)basesmanyofitstoxicityassessmentsonstructure-activityrelationships(SARs).WhatisSARs???SARsrefertotheabilityofagroupofanalogouschemicalstoproduceaparticularbiologicaleffect,andtheinfluencethatthestructuraldifferencesbetweenthechemicalshaveonrelativepotencyinproducingthebiologicaleffect.

IntheQSAR(quantitativestructure-activityrelationships)ofaquatictoxicity,somephysicalpropertiesareoftenusedasoctanol-waterpartitioncoefficient(辛醇—水分配系数logP),

water-solubility(水溶性),dissociationconstant(解离常数pKa),

molecularweight(分子量),PercentAmineNitrogen(胺氮百分数),etal.(1)Octanol-WaterPartitionCoefficient

(logP或logKo-w)

Theoctanol-waterPartitionCoefficientisatermusedtoexpressasubstance‘slipophilicity(油溶性).Itisthephysicalchemistrypropertymostfrequentlyusedtoestimatetheaquatictoxicityoforganicchemicals.BecauselogPoftencorrelateswellwithbiologicalactivity.

4.3.2AdjustingthePhysicalChemicalProperties

Forchemicalswhoseaquatictoxicityisduetonarcosistoxicity

Chemistscanreducethepotentialforaquatictoxicitybydesigningchemicalsasbelow:

logP≤2,molecularweight≤200daltons

logP≥8,regardlessofmolecularweight.

TodecreaselogP,polarsubstationssuchascarboxylic,alcoholic,orotherwatersolublegroupscanbeaddedtochemicals.Ontheotherhand,logPcanbeincreasedbyaddinghydrophobicgroupssuchashalogens,phenylrings,andalkylgroups.

(2)WaterSolubility

Asageneralrule,chemicalshavingwatersolubilitylessthan1ppbareessentiallynon-toxictoaquaticspeciesduetolowbioavailability.

Ontheotherhand,chemicalshavinggoodwatersolubilityarenontoxictoaquaticspecies.However,thereisnotaupperlimit.CH3CH2C(OH)(CH3)2

CH3CH2CH2CH2CH2OH

a+98g/L

ag/L

continue(3)MolecularSizeandWeightIfthenewchemical'smolecularweightisincreased,thechemicalwillbelesstoxictoaquaticorganismswhileholdingallotherfactorsconstant.Atamolecularweightof1000Daltons,uptakewillbenegligiblebecausethechemicalwillnotdiffuseacrosstherespiratorymembranesofaquaticorganisms.Chemicalswithminimumcross-sectiondiametersgreaterthan1nmaretoolargeforpassivediffusionanduptakethroughtherespiratorymembranesofaquaticorganisms.

Neutralphthalocyaninedyes(天然酞菁染料)minimumcross-sectionaldiameters>1nm.lowacuteandchronictoxicitytoaquaticorganismsTheDesignPrinciple*toincreaseminimumcross-sectionaldiameters*toincreasethemoleculeweight(4)IonPairSomechemicalsaltsexistasstrongionpairswhenanionanditscounterionareassociatedstronglywithoneanother.Thesechemicalsdissociateweaklyornotatallinwater.Consequently,mayhavelowwatersolubilitiesandlowaquatictoxicity

Ifasolubleandchargedchemicalcanbeconvertedtoastrongionpairandstillretainitsusefulnessinauseapplication,thentheresultingsubstancewillbelesstoxictoaquaticorganisms.Ifthepesticidescouldbeformulatedwiththecationicsurfactant:anionicsurfactantstrongionpair(assuminga1:1ratio),thenthetoxicityofthesurfactant(s),couldbereducedmorethan100-fold.(5)Zwitterions(两性离子)ZwitterionsaresubstancesthatcontainpositivelyandnegativelychargedgroupsZwitterionsgenerallyhavelowtoxicitytoaquaticorganisms,providedthatthesubstancehasbalancedchargesanddoesnothavesurfactantproperties.酸性蓝1号

(6)ChelationSubstancesthatcanchelatepolyvalentmetalsareoftentoxictoalgae(海藻)insoftwatersituationsbecausetheydeprivethealgaeofessentialnutrientelements,e.g.,Ca2+,Mg2+,orFe2+.Therefore,algaltoxicitycanbereducedifachelatorisboundwithapolyvalentmetalbeforeexposuretoalgaetakesplaceorifthechemicalisreleasedtosurfacewaterswhichhavemoderatetohighhardness.4.3.3MolecularModification1、NarcosisandExcessToxicityExamplesofchemicalsthataretoxicbyspecificmechanismsinclude:electrophiles(亲电性物质)suchasepoxides,alkylhalides,acrylates,andaldehydescertainesters;dinitrobenzenes;andthiols,tonameafew.Theelectrophilicchemicalsmaycombinecovalentlywithnucleophiles(亲核性物质)locatedinreceptorsofintracellularmacro-molecules.Thisbondingresultsinacellularchangethatisdifficulttoreverse,andresultinirreversibletoxicity.

ExcessToxicity

TheaquatictoxicityofachemicalthatistoxicfromaspecificmechanismisusuallyconsiderablygreaterthanthatpredictedforthesubstanceusingaQSARequationdevelopedforchemicals

thataretoxicbynarcosis.ExcessToxicity=TAT-TAP

2.Thetoxicityofchemicalscanbedecreased

bymodification

Thetoxicityofchemicalsthataretoxicbyaspecificmechanismcanbedecreasedbymakingstructuralmodificationsthatstericallyhinderthemsuchthattheycannolongerreachoractwiththeirtargetsites(i.e.,reducingtheirtoxicitytoonlynarcosis).Forexample,ie

stericallyhinderedcyclicaliphaticamineis2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论