版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届北京市大兴区市级名校数学高一下期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,长方体的体积为,E为棱上的点,且,三棱锥E-BCD的体积为,则=()A. B. C. D.2.如果数列的前项和为,那么数列的通项公式是()A. B.C. D.3.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.经过点,斜率为2的直线在y轴上的截距为()A. B. C.3 D.55.若,则下列不等式恒成立的是()A. B. C. D.6.设集合,则A. B. C. D.7.水平放置的,用斜二测画法作出的直观图是如图所示的,其中,,则绕AB所在直线旋转一周后形成的几何体的表面积为()A. B. C. D.8.将函数的图象向左平移个单位得到函数的图象,则的值为()A. B. C. D.9.当前,我省正分批修建经济适用房以解决低收入家庭住房紧张问题.已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户,若第一批经济适用房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,先采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为()A.30 B.40 C.20 D.3610.已知非零向量满足,且,则与的夹角为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,若,则______.12.已知圆锥的高为,体积为,用平行于圆锥底面的平面截圆锥,得到的圆台体积是,则该圆台的高为_______.13.数列{}的前项和为,若,则{}的前2019项和____.14.已知圆柱的底面圆的半径为2,高为3,则该圆柱的侧面积为________.15.已知为所在平面内一点,且,则_____16.空间一点到坐标原点的距离是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同.若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度与时间t满足关系式:,若使用口服方式给药,则药物在白鼠血液内的浓度与时间t满足关系式:现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰.(1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?(2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围.18.中,角A,B,C所对边分别是a、b、c,且.(1)求的值;(2)若,求面积的最大值.19.如图所示,在平面四边形中,为正三角形.(1)在中,角的对边分别为,若,求角的大小;(2)求面积的最大值.20.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.21.如下图,长方体ABCD-A1B1C1D1中,(1)当点E在AB上移动时,三棱锥D-D(2)当点E在AB上移动时,是否始终有D1
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
分别求出长方体和三棱锥E-BCD的体积,即可求出答案.【详解】由题意,,,则.故选D.【点睛】本题考查了长方体与三棱锥的体积的计算,考查了学生的计算能力,属于基础题.2、D【解析】
利用计算即可.【详解】当时,当时,即,故数列为等比数列则因为,所以故选:D【点睛】本题主要考查了已知来求,关键是利用来求解,属于基础题.3、A【解析】
根据和之间能否推出的关系,得到答案.【详解】由可得,由,得到或,,不能得到,所以“”是“”的充分不必要条件,故选:A.【点睛】本题考查充分不必要条件的判断,属于简单题.4、B【解析】
写出直线的点斜式方程,再将点斜式方程化为斜截式方程即可得解.【详解】因为直线经过点,且斜率为2,故点斜式方程为:,化简得:,故直线在y轴上的截距为.故选:B.【点睛】本题考查直线的方程,解题关键是应熟知直线的五种方程形式,属于基础题,5、D【解析】
利用不等式的性质、对数、指数函数的图像和性质,对每一个选项逐一分析判断得解.【详解】对于选项A,不一定成立,如a=1>b=-2,但是,所以该选项是错误的;对于选项B,所以该选项是错误的;对于选项C,ab符号不确定,所以不一定成立,所以该选项是错误的;对于选项D,因为a>b,所以,所以该选项是正确的.故选D【点睛】本题主要考查不等式的性质,考查对数、指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.6、B【解析】,选B.【考点】集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.7、B【解析】
先根据斜二测画法的性质求出原图形,再分析绕AB所在直线旋转一周后形成的几何体的表面积即可.【详解】根据斜二测画法的性质可知,原是以为底,高为的等腰三角形.又.故为边长为2的正三角形.则绕AB所在直线旋转一周后形成的几何体可看做两个以底面半径为,高为的圆锥组合而成.故表面积为.故选:B【点睛】本题主要考查了斜二测画法还原几何图形与旋转体的侧面积求解.需要根据题意判断出旋转后的几何体形状再用公式求解.属于中档题.8、A【解析】,向左平移个单位得到函数=,故9、A【解析】
先求出每个个体被抽到的概率,再由乙社区的低收入家庭数量乘以每个个体被抽到的概率,即可求解【详解】每个个体被抽到的概率为,乙社区由270户低收入家庭,故应从乙中抽取低收入家庭的户数为,故选:A【点睛】本题考查分层抽样的应用,属于基础题10、B【解析】
本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由得出向量的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为,所以=0,所以,所以=,所以与的夹角为,故选B.【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由条件利用正切函数的单调性直接求出的值.【详解】解:函数在上单调递增,且,若,则,故答案为:.【点睛】本题主要考查正切函数的单调性,根据三角函数的值求角,属于基础题.12、【解析】设该圆台的高为,由题意,得用平行于圆锥底面的平面截圆锥,得到的小圆锥体积是,则,解得,即该圆台的高为3.点睛:本题考查圆锥的结构特征;在处理圆锥的结构特征时可记住常见结论,如本题中用平行于圆锥底面的平面截圆锥,截面与底面的面积之比是两个圆锥高的比值的平方,所得两个圆锥的体积之比是两个圆锥高的比值的立方.13、1009【解析】
根据周期性,对2019项进行分类计算,可得结果。【详解】解:根据题意,的值以为循环周期,=1009故答案为:1009.【点睛】本题考查了周期性在数列中的应用,属于中档题。14、【解析】
圆柱的侧面打开是一个矩形,长为底面的周长,宽为圆柱的高,即,带入数据即可.【详解】因为圆柱的底面圆的半径为2,所以圆柱的底面圆的周长为,则该圆柱的侧面积为.【点睛】此题考察圆柱侧面积公式,属于基础题目.15、【解析】
将向量进行等量代换,然后做出对应图形,利用平面向量基本定理进行表示即可.【详解】解:设,则根据题意可得,,如图所示,作,垂足分别为,则又,,故答案为.【点睛】本题考查了平面向量基本定理及其意义,两个向量的加减法及其几何意义,属于中档题.16、【解析】
直接运用空间两点间距离公式求解即可.【详解】由空间两点距离公式可得:.【点睛】本题考查了空间两点间距离公式,考查了数学运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)0.【解析】
(1)药物在白鼠血液内的浓度y与时间t的关系为:当a=1时,y=y1+y2;①当0<t<1时,y=﹣t4=﹣()2,所以ymax=f();②当1≤t≤3时,∵,所以ymax=7﹣2(当t时取到),因为,故ymax=f().(2)由题意y①⇒⇒,又0<t<1,得出a≤1;②⇒⇒由于1≤t≤3得到,令,则,所以,综上得到以0.18、(1);(2)【解析】
(1)将化简代入数据得到答案.(2)利用余弦定理和均值不等式计算,代入面积公式得到答案.【详解】;(2)由,可得,由余弦定理可得,即有,当且仅当,取得等号.则面积为.即有时,的面积取得最大值.【点睛】本题考查了三角恒等变换,余弦定理,面积公式,均值不等式,属于常考题型.19、(1);(2).【解析】
(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角的大小;(2)在中,设,由余弦定理及正弦定理用表示出.再根据三角形面积公式表示出,即可结合正弦函数的图像与性质求得最大值.【详解】(1)由题意可得:∴整理得∴∴∴又∴(2)在中,设,由余弦定理得:,∵为正三角形,∴,在中,由正弦定理得:,∴,∴,∵,∵,∴为锐角,,,,∵∴当时,.【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题.20、(Ⅰ);(Ⅱ)或.【解析】
分析:(Ⅰ)先根据三角函数定义得,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.【详解】详解:(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型(1)给角求值:关键是正确选用公式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/Z 112-2026中医药中西医结合临床术语系统分类框架
- 锁具装配工安全培训效果评优考核试卷含答案
- 履带运输车司机保密意识知识考核试卷含答案
- 桥梁桩基施工培训
- 酒店资产管理制度
- 酒店客房服务规范及服务质量标准制度
- 车站客运服务质量管理规定制度
- 采购价格谈判与成本控制制度
- 卡压式涂覆碳钢管专项施工方案
- 活动组织技巧培训
- 1、湖南大学本科生毕业论文撰写规范(大文类)
- 山西十五五规划
- 基于多源数据融合的深圳市手足口病时空传播模拟与风险预测模型构建及应用
- 咯血的急救及护理
- 2025初三历史中考一轮复习资料大全
- 粮库安全生产工作计划
- 2025年江西公务员考试(财经管理)测试题及答案
- 涉诉涉法信访课件
- 砂石料购销简单版的合同
- 春运安全行车知识培训课件
- 局部麻醉课件
评论
0/150
提交评论